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T Recommender systems have evolved into core business hubs, with
approximately 35% of Amazon's revenue stemming from recommendation-guided
behaviors. This study conducts a systematic comparative analysis of three multi-armed
bandit algorithms—Bayesian Linear Upper Confidence Bound (Bayesian LinUCB), Upper
Confidence Bound (UCB), and Thompson Sampling—using the MovieLens dataset. The
research evaluates algorithm performance across three key dimensions: cumulative regret,
optimal arm selection frequency, and regret rate. Experimental variables are strictly
controlled with consistent parameters, including decision steps and data division ratios to
eliminate confounding factors. Results reveal significant performance differences among the
algorithms within the limited experimental steps on the MovielLens dataset. UCB
demonstrates optimal performance with the lowest cumulative regret (817.93) and highest
optimal arm selection frequency (0.9822), followed by Thompson Sampling with moderate
performance (cumulative regret: 2776.36, selection frequency: 0.924). Bayesian LinUCB
performs poorly across all metrics, showing the highest cumulative regret (34105.02),
lowest selection frequency (0.1324), and a regret rate of approximately 1, indicating linear
rather than sublinear growth. The sublinear growth characteristic exhibited by UCB and
Thompson Sampling confirms their superior exploration-exploitation balance, while
Bayesian LinUCB's linear growth pattern suggests inadequate adaptation to the MovieLens
dataset scenario, highlighting the importance of algorithm-dataset compatibility in
recommendation systems.

Bayesian LinUCB, Upper Confidence Bound, Thompson Sampling, MovieLens,
Cumulative Regret

In the digital economy, recommender systems have evolved from "auxiliary tools" to core hubs
connecting corporate services and user needs, with their value rooted in two key drivers. First, they
exert a decisive impact on enterprises’ economic benefits. As personalized services become a key
competitive focus across industries, companies in fields such as e-commerce, streaming media, and
advertising have invested huge resources in the research, development, and application of
recommendation technologies. Per McKinsey’s 2018 report, The E-Commerce Consumer Decision
Journey, approximately 35% of Amazon’s transaction conversions come from consumption
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behaviors guided by its recommendation system—this figure remained a key industry reference for
evaluating the value of recommendation systems in 2023, underscoring their huge economic
influence. Second, they are key solutions to address the contradiction between "explosive product
growth" and "user information overload." Today’s consumer market sees product iteration speed
reach an all-time high; the situation of "choice redundancy" makes it difficult for users to fully grasp
product details, and they are more likely to fall into "choice paralysis" during the decision-making
process. Recommender systems, by accurately capturing user preferences and filtering key
information, can effectively reduce users’ decision-making costs and help them quickly find
products that meet their needs. In short, the quality of recommender systems not only directly affects
the market competitiveness and economic benefits of enterprises across industries but also
influences their willingness to pay for recommendation technology research, development, and data
resource investment. It also profoundly impacts users’ initial perception and trust in products, shapes
their subsequent purchase decisions, brand loyalty, and even long-term consumption habits, serving
as crucial support for the mutual value realization between enterprises and users in the digital era.

Due to its better exploration and exploitation of sequential decision problems now, the multi-armed
bandit (MAB) algorithm has become a more commonly researched algorithm. In early work, Auer
et. al. (2002) were able to establish finite time regret bounds for algorithms like UCB1. In particular,
these proved logarithmic regret over time and served as an established lower bound on MAB
analysis [1]. Then MAB was extended to contextual settings LinUCB by Li et al. (2010), context
(user/item features) was included for personalizing news recommendation; And in Linear Thompson
Sampling (LinTS) by Agrawal and Goyal (2013), Thompson Sampling was applied on linear
contextual bandit [2, 3].

In these past handful of years, the MAB study has become more realistic, tougher. For example,
Wei & Srivastava (2021) looked into nonstationary bandits with changing reward distributions and
introduced new kinds of sliding windows and discounted UCB, which did better than traditional
bandit algorithms in nonstationary environments [4]. Zhu & Liu(2021) studied the case of
distributed MABs where multiple agents collaborate over a network to effectively find the best
arms, and it works even if the graph is disconnected [5].

More innovations, along with MAB, are up with modern machine learning paradigms. Qiu et al.
(2022) combine contrastive self-supervised learning and UCB to improve the sample efficiency of
online Reinforcement Learning (RL) over Linear Reinforcement Learning in Markov Decision
Processes (LRMDPs) and Markov Games [6]. Zhu& Qiu (2024) propose BUCB-E, a Bayesian
UCB-Explore, which is robust due to the use of priors in fixed-budget best-arm identification [7].
MABs with costly probes are explored by Elumar et al. (2024); arms with costs for information
concerning arms, costly, are investigated; and a UCBp variant and Thompson sampling variant are
created to aid decisions involving costs [8].

New fields also have more recent expansion of application: Wu et al. (2025) regard the path
selection in the semantic communication network as a sleepy bandit problem and put forward a
UCB-based path selection algorithm to enhance energy utilization and transmission accuracy [9].
Saday et al.(2025) propose the Byzantine proof MAB algorithm Federated Median-of-Means UCB
(Fed-MOM-UCB) in a federated environment [10].

All the progress shows that MAB methods are becoming increasingly adjustable, scalable, and
practical. It gives the paper rich ground to explore UCB, Thompson Sampling, and Bayesian
LinUCB for movie recommendation.
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The research methodology is designed into three interconnected phases. The first phase focuses on
data processing. This includes loading the MovieLens dataset, creating 18 arms based on movie
groups, and constructing feature vectors for the Bayesian Linear UCB algorithm. The second phase
is dedicated to model construction, implementing three multi-armed bandit algorithms: the UCB
algorithm, the Thompson Sampling algorithm, and the Bayesian Linear UCB algorithm. The third
phase involves performance evaluation, comprehensively assessing the algorithms using three
metrics: cumulative regret, regret rate, and optimal arm selection frequency.

This research uses the MovieLens 1M dataset for experiments, which includes three core files: user
information, movie ratings, and movie metadata. The data preprocessing process is as follows.

For data loading and integration, the research loads three files: "users.dat’ (user attributes),
‘ratings.dat’ (rating records), and ‘movies.dat’ (movie information) - Merge rating data with user
attribute data through user ID (user id"), then merge with movie information through movie ID
(‘'movie id") to form a complete dataset containing user-movie-rating-genre - Perform data integrity
checks to ensure all required files exist and prevent errors in subsequent processes. For the Arm
Definition, the research divides the data into arms based on movie genres. Calculate the average
rating of each genre as the true reward value for subsequent regret calculation.

For feature engineering, the research constructs a 12-dimensional context feature vector for each
sample, including: - Gender features: 1-dimensional binary encoding (1 for Female, 0 for Male) -
Occupation features: 4-dimensional classification encoding (Student/Education,
Technical/Professional, Service/Sales, Management/Administration) - Age features: 5-dimensional
one-hot encoding (<18, 19-25, 26-35, 36-45, >45) - Interaction features: 2-dimensional cross
features (underage female, young adult male).

For data preparation, the research creates a list of (feature vector, rating) tuples for each arm for
easy algorithm invocation - Implement a data cycle index mechanism with shuffling to avoid
sequence bias, supporting continuous access to each arm's data during experiments This
preprocessing process converts raw recommendation data into an input format that conforms to the
contextual multi-armed bandit problem framework, which not only retains key feature information
of users and items but also ensures stable operation of the algorithm through standardized
processing.

This study employs the Bayesian LinUCB algorithm as the core model for solving the contextual
multi-armed bandit problem in personalized recommendation scenarios.

For hyperparameter optimization, this model uses a grid search approach over a predefined set of
values for key parameters, including the prior regularization parameter, the exploration coefficient,
and the feature dimension. Then, the dataset is divided into 5 groups, where four groups are used for
training and one for validation. This search uses 3 evaluation metrics to evaluate the algorithm’s
performance.

The Bayesian LinUCB algorithm maintains a posterior distribution over the linear model weights
for each arm. The weights follow a normal distribution, and the mean vector and covariance matrix
are updated iteratively (as shown in Formula (1) and (2). When selecting an arm, the algorithm
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computes the UCB value for each arm. The UCB value is the sum of the posterior mean prediction
and a term proportional to the posterior standard deviation. This UCB value helps the model select
toward arms that either have great performance or have high uncertainty.

Update phase, after seeing a reward from selected arms, the parameter of the posterior
distribution will be updated by using the conjugate prior property from Bayesian Linear Regression:
The inverse covariance matrix is updated by adding the outer product of the context feature vector.
The mean vector is updated to include the new observation while keeping in mind the prior belief.
With this update rule, the model will keep getting better at guessing the weights of an arm as it
learns more and more over time, making its decisions better with each iteration.

S =Y+ Ok xxt (1)

Formula 1 is to update the posterior covariance matrix. The terms on the Right-Hand Side (RHS)
are the inverse of the posterior covariance matrix before this batch. This retains the prior information
with respect to the parameters. The paper adds all of the sums of the external products with the
context vectors of the current batch. It gives the newest data. Finally, the paper adds a regularization
term so the covariance matrix will not be singular.

M= "0 (( S0 AD st Sy 1ix; 2)

Formula 2 shows how to update the posterior mean vector, which is calculated using the updated
covariance matrix from the previous step. The terms involved include: the product of the updated
inverse covariance matrix (minus a prior precision term) and the prior mean vector, combined with
the sum of the products of each reward and its corresponding context vector from the current batch.
This operation integrates the new reward-related information with the prior beliefs to refine the
mean estimate.

The final performances of the models are assessed using three metrics: cumulative regret, regret rate,
and optimal arm selection frequency.

Cumulative regret for a whole run of an algorithm is the total loss of choosing optimal arms
rather than the optimal one throughout the entire length of time. It is computed as the sum over all
steps of the difference between the reward of the best arm and the actual chosen arm. This is a direct
measure of how much reward the algorithm has given up on. Especially, we’d like to know how
much the algorithm spends on exploration and exploitation in total over time.

R(T) = X1 (1"~ tay) (3)

Where T is the total number of time steps, r* is the true value of the best arm, and p* is the true
value of the arm a_{t} chosen at step t.
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Regret rate is the rate at which the sum of regrets is increasing by step number. It uses a power-
law relationship formula 4 to fit the cumulative regret curve. If the regret rate is below 1, it implies
that the regret is developing slower than linearly with respect to time, which is advantageous for a
Multi-Armed Bandit algorithm. This metric would be necessary if the paper needs long-term
behavior and scaling of the application of this algorithm. To get it, the search takes a log-log
transformation and linear regression. Step 1: Take logs of steps and the corresponding regret, then fit
a linear model to this data, with the slope of the fit being the regret rate a.

R(T) =~ C - T" “4)

The paper uses R(T) to denote the regret up until time step T, and a is the regret rate. Optimal
arm selection frequency looks into how frequently the algorithm chooses the arm that gives the
greatest reward (true reward). This i1s found by dividing the number of times the arm with the most
reward was selected by the total number of times an arm is chosen and noted periodically through
the experiment. This is going to be a very important metric for what the paper wants to look at, in
terms of how fast and reliably the algorithm can get onto the best arm and be on it, and remain on it.

F(T) =X (5)

N™ is the number of times the optimal arm is selected in the first T steps.

The experiments were conducted on a system equipped with an Intel 13th Generation Core 17-
13700HX 16-core CPU, 16GB RAM, and NVIDIA GeForce RTX 5060 Laptop Graphics Processing
Unit (GPU), running Windows 11. The software environment included Python 3.10 with key
libraries: NumPy 2.2.6, pandas 2.3.1, matplotlib 3.10.5, and tqdm 4.67.1.

The study utilizes the MovieLens 1M dataset, consisting of three main files: users.dat (user
attributes including gender, age, occupation, and zip code), ratings.dat (user-movie rating records
with timestamps), and movies.dat (movie titles and genres). The experimental framework merges
ratings.dat and users.dat based on user ID to create a comprehensive dataset containing user
attributes and movie ratings. Rather than traditional train-test splits, the study employs an online
bandit setting where all available data creates movie-based arms and corresponding feature vectors,
with algorithms interacting with data sequentially during experiments. The dataset is processed to
define 18 arms based on movie groups, with each arm's average rating serving as the true reward
value for subsequent regret calculations.

The experimental results of Bayesian LinUCB, UCB, and Thompson Sampling on the MovieLens
dataset in terms of cumulative regret, regret rate, and optimal arm selection frequency.
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Cumulative Regret. In the multi-armed bandit recommendation experiment conducted on the
MovieLens dataset, the analysis results for the core evaluation metric Cumulative Regret, as shown
in Fig. 1, reveal significant performance differences among the three algorithms. Specifically, the
UCB algorithm achieves the optimal performance, with a final cumulative regret value of 817.93;
the Thompson Sampling algorithm ranks second, reaching a cumulative regret value of 2776.36;
while the Bayesian LinUCB algorithm performs the worst, with a cumulative regret value as high as
34105.02. A further analysis of the dynamic variation trend of cumulative regret shows that the
cumulative regret curves of both the UCB algorithm and the Thompson Sampling algorithm exhibit
the characteristic of sublinear growth—a trend consistent with the ideal performance of multi-armed
bandit algorithms. In sharp contrast, the cumulative regret curve of the Bayesian LinUCB algorithm
exhibits a distinct characteristic of linear growth. This implies that, in the experimental scenario of
the current MovieLens dataset, the total reward loss of this algorithm increases at a constant rate
with the increase in the number of decisions, and its ability to balance exploration and exploitation
of optimal actions is relatively weak.

Cumulative Regret Comparison
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Figure 1. Results of cumulative regret comparison (photo credit: original)

Regret Rate. In the experiment, the experimental statistical results for the key metric regret rate
further confirm the performance gaps among the three algorithms, as shown in Fig. 2. Specifically,
the UCB algorithm still demonstrates the optimal performance, with a regret rate as low as 0.111.
The Thompson Sampling algorithm performs second, with a regret rate of 0.2918. Although higher
than that of the UCB algorithm, it remains at a relatively low level.

In contrast, the regret rate of the Bayesian LinUCB algorithm is significantly higher,
approximately 1. This value means that the growth rate of its reward loss with the number of
decision steps is basically synchronized with the increase in steps, that is, it shows an obvious linear
growth trend. More importantly, within the limited number of decision steps set in the experiment,
the Bayesian LinUCB algorithm failed to exhibit the sublinear growth characteristic that multi-
armed bandit algorithms should possess. Generally speaking, the sublinear growth characteristic is
the core embodiment of an algorithm's ability to gradually optimize decisions and reduce the loss
growth rate through continuous exploration. However, the performance of this algorithm within this
range further indicates that in the scenario of the current dataset, its ability to balance exploration
and exploitation is insufficient, making it difficult to effectively slow down the loss growth rate
through decision optimization within a limited number of steps.
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Regret Rate Comparison
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Figure 2. Results of regret rate comparison (photo credit: original)

Optimal Arm Selection Frequency. The statistical results for the key evaluation metric Optimal
Arm Selection Frequency show that the three algorithms exhibit a distinct hierarchy in their ability
to identify and select optimal actions. As shown in Fig. 3, the UCB algorithm still maintains the
optimal performance, with an optimal arm selection frequency as high as 0.9822. The Thompson
Sampling algorithm performs second, with an optimal arm selection frequency of 0.9239. Although
slightly lower than that of the UCB algorithm, it still maintains high decision accuracy. In contrast,
the optimal arm selection frequency of the Bayesian LinUCB algorithm lags significantly, at only
0.1324. This result confirms that in the experimental scenario of the current dataset, the algorithm's
exploration efficiency and recognition accuracy for optimal actions are both at a low level.
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Figure 3. Results of optimal arm selection frequency (photo credit: original)
4.3. Analysis

In the multi-armed bandit recommendation experiment on the MovieLens dataset, a comprehensive
analysis of three key metrics—Cumulative Regret, Optimal Arm Selection Frequency, and Regret
Rate——clearly defines the performance hierarchy and core differences among the UCB, Thompson
Sampling, and Bayesian LinUCB algorithms:

In terms of Cumulative Regret, the UCB algorithm achieves the optimal performance with a final
value of 817.93, followed by Thompson Sampling(2776.36), while Bayesian LinUCB(34105.02)
performs the worst. In terms of dynamic trends, the cumulative regret curves of UCB and Thompson
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Sampling exhibit sublinear growth—a characteristic consistent with the ideal performance of multi-
armed bandit algorithms. This indicates that as the number of decision rounds increases, the ability
of both algorithms to avoid non-optimal actions continuously improves, and the growth rate of total
reward loss gradually slows down. In contrast, Bayesian LinUCB shows linear growth, meaning its
reward loss increases at a constant rate with the number of decisions, and its adaptation efficiency to
optimal actions is significantly lower.

Regarding Optimal Arm Selection Frequency, the UCB algorithm dominates with a high
frequency of 0.9822, demonstrating an extremely strong ability to identify optimal actions.
Thompson Sampling maintains a sub-optimal level with a frequency of 0.9239, and its exploration-
exploitation balance strategy based on Bayesian inference can stably lock in the optimal arm. In
contrast, the 0.1324 frequency of Bayesian LinUCB confirms that its exploration accuracy and
decision reliability for optimal actions are at a low level.

From the analysis of the Regret Rate metric, UCB exhibits the optimal loss control ability with a
low rate of 0.111, and the growth rate of reward loss is extremely slow. Although Thompson
Sampling (0.2918) is slightly higher, it can still control the loss rhythm through strategy balance,
and both conform to the core characteristic of sublinear growth. However, the regret rate of
Bayesian LinUCB is approximately 1, meaning the growth rate of its reward loss is synchronized
with the number of decision steps, showing an obvious linear growth trend. Moreover, within the
limited number of steps set in the experiment, Bayesian LinUCB completely fails to exhibit the
sublinear growth characteristic that multi-armed bandit algorithms should possess, reflecting the
failure of its exploration-exploitation balance mechanism in the current dataset scenario.

The comprehensive analysis of three key metrics—cumulative regret, optimal arm selection
frequency, and regret rate—establishes a clear performance hierarchy among the UCB, Thompson
Sampling, and Bayesian LinUCB algorithms in the MovieLens dataset recommendation scenario.
UCB achieves optimal performance with the lowest cumulative regret (817.93) and highest optimal
arm selection frequency (0.9822), demonstrating superior loss control and optimal action
recognition capabilities. Thompson Sampling maintains competitive performance as the second-best
algorithm with moderate cumulative regret (2776.36) and selection frequency (0.9239), while both
algorithms exhibit the crucial sublinear growth characteristic essential for multi-armed bandit
effectiveness. The sublinear growth patterns of UCB and Thompson Sampling create a positive
feedback cycle of improved exploration efficiency, reduced loss growth rates, and increased optimal
action recognition, confirming their theoretical advantages and practical applicability in
recommendation tasks.

In contrast, Bayesian LinUCB demonstrates significantly inferior performance across all
evaluation dimensions, recording the highest cumulative regret (34105.02), lowest optimal arm
selection frequency (0.1324), and a regret rate approximating 1, indicating problematic linear
growth rather than the desired sublinear pattern. This linear growth characteristic suggests
fundamental limitations in the algorithm's exploration-exploitation balance mechanism within the
current dataset scenario, highlighting the critical importance of algorithm-dataset compatibility in
recommendation systems. The findings emphasize that sublinear growth capability directly
determines revenue stability and long-term performance in recommendation tasks, while also
demonstrating that algorithm adaptability is strongly correlated with specific dataset characteristics
and feature distributions.
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