References
[1]. Wu, C., Wu, F., Huang, Y., Xie, X.: Personalized news recommendation: Methods and challenges. ACM Transactions on Information Systems 41(1), 1–50 (2023).
[2]. Zhang, Y., Chen, X.: Explainable recommendation: A survey and new perspectives. Foundations and Trends in Information Retrieval 14(1), 1–101 (2020).
[3]. Yang, Y.: Modeling user autonomy in recommender systems using Markov perturbation-based multi-armed bandits. Theoretical and Natural Science 86(1), 195–201 (2025).
[4]. Lattimore, T., Szepesvari, C.: Bandit Algorithms. Cambridge University Press (2020).
[5]. Wu, C.Y., Wu, F., Qi, T., Lian, J., Huang, Y., Xie, X.: MIND: A large-scale dataset for news recommendation. In: Proceedings of ACL, pp. 3597–3606 (2020).
[6]. Qi, T., Wu, F., Wu, C., Huang, Y., Xie, X.: Personalized news recommendation with knowledge-aware user interest modeling. ACM Transactions on Information Systems 39(4), 1–28 (2021).
[7]. Wu, C.Y., Wu, F., Ge, S., Qi, T., Huang, Y., Xie, X.: Neural news recommendation with multi-head self-attention. In: Proceedings of EMNLP, pp. 6389–6394 (2019).
[8]. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of NAACL-HLT, pp. 4171–4186 (2019).
[9]. Okura, S., Tagami, Y., Ono, S., Tajima, A.: Embedding-based news recommendation for millions of users. In: Proceedings of KDD, pp. 360–369 (2017).
[10]. Yoshida, N., Nishio, T., Morikura, M., Yamamoto, K.: MAB-based client selection for federated learning with uncertain resources in mobile networks. IEEE Transactions on Mobile Computing 19(11), 2562–2576 (2020).
[11]. Feng, F., Chen, X., He, X., Ding, Z., Zhang, Y.: Improving personalized recommendation with complementary item relationship modeling. IEEE Transactions on Knowledge and Data Engineering 33(5), 2210–2223 (2021).
[12]. Zhu, Y., Wang, X., He, X., Xu, T.: Deep reinforcement learning for online advertising in recommender systems. ACM Transactions on Intelligent Systems and Technology 12(6), 1–25 (2021).