References
[1]. Istrate, D.; Crisan, L. Dipeptidyl peptidase 4 inhibitors in type 2 diabetes mellitus management: Pharmacophore virtual screening, molecular docking, pharmacokinetic evaluations, and conceptual DfT analysis. Processes 2023, 11, 3100.
[2]. Green, B. D.; Flatt, P. R.; Bailey, C. J. Dipeptidyl peptidase IV (DPP IV) inhibitors: a newly emerging drug class for the treatment of type 2 diabetes. Diabetes and vascular disease re- search 2006, 3, 159–165.
[3]. Petrov, V.; Aleksandrova, T.; Pashev, A. Synthetic Approaches to Novel DPP-IV Inhibitors— A Literature Review. Molecules 2025, 30, 1043.
[4]. Hossain, D.; Saghapour, E.; Chen, J. Y. NeSyDPP4-QSAR: Discovering DPP-4 Inhibitors for Diabetes Treatment with a Neuro-symbolic AI Approach. Frontiers in Bioinformatics 2025, 5, 1603133.
[5]. Olivecrona, M.; Blaschke, T.; Engkvist, O.; Chen, H. Molecular de-novo design through deep reinforcement learning. Journal ofcheminformatics 2017, 9, 48.
[6]. Popova, M.; Isayev, O.; Tropsha, A. Deep reinforcement learning for de novo drug design. Science advances 2018, 4, eaap7885.
[7]. Gaulton, A.; Bellis, L. J.; Bento, A. P.; Chambers, J.; Davies, M.; Hersey, A.; Light, Y.; McGlinchey, S.; Michalovich, D.; Al-Lazikani, B.; Overington, J. P. ChEMBL: a large-scale bioactivity database for drug discovery. Nucleic acids research 2012, 40, D1100–D1107.
[8]. Loeffler, H. H.; He, J.; Tibo, A.; Janet, J. P.; Voronov, A.; Mervin, L. H.; Engkvist, O. Reinvent 4: modern AI–driven generative molecule design. Journal of Cheminformatics 2024, 16, 20.
[9]. Chen, T.; Guestrin, C. Xgboost: A scalable tree boosting system. Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining. 2016; pp 785–794.
[10]. Van De Waterbeemd, H.; Gifford, E. ADMET in silico modelling: towards prediction paradise? Nature reviews Drug discovery 2003, 2, 192-204.