References
[1]. Quan, W.; Chen, J.; Liu, Y.; Yan, D.-M.; Wonka, P. Deep Learning-based Image and Video Inpainting: A Survey. International Journal of Computer Vision, 2024(accepted). arXiv: 2401.03395; doi: 10.48550/arXiv.2401.03395.O. Elharrouss, N. Almaadeed, S. Al-Maadeed, and R. Akbari, “Deep learning for image inpainting: A survey, ” Pattern Recognition, vol. 122, p. 108341, 2022. doi: 10.1016/j.patcog.2021.108341.
[2]. H. K. Aggarwal, M. P. Mai, and M. Jacob, “A projection-based cascaded U-Net model for magnetic resonance image reconstruction, ” IEEE Transactions on Medical Imaging, vol. 40, no. 5, pp. 1370–1381, 2021. doi: 10.1109/TMI.2020.3047761.
[3]. Aghabiglou, A.; Eksioglu, E. M. Projection-based Cascaded U-Net Model for MR Image Reconstruction. Computer Methods and Programs in Biomedicine, 207: 106151, 2021. doi: 10.1016/j.cmpb.2021.106151.
[4]. Liu, L.; Liu, Y. Load Image Inpainting: An Improved U-Net Based Load Missing Data Recovery Method. Applied Energy, 327: 119988, 2022. doi: 10.1016/j.apenergy.2022.119988.
[5]. Yu, Y.; Zhan, F.; Lu, S.; Pan, J.; Ma, F.; Xie, X.; Miao, C. WaveFill: A Wavelet-based Generation Network for Image Inpainting. In: Proc. IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14114–14123, 2021. doi: 10.1109/ICCV48922.2021.01385.
[6]. T. Xiang, Z. Zhang, R. Wang, C. Zhang, and Y. Wang, “BiO-Net: Learning recurrent bi-directional connections for encoder–decoder architecture, ” Medical Image Analysis, vol. 67, p. 101849, 2020. doi: 10.1016/j.media.2020.101849.
[7]. Xiang, T.; Zhang, C.; Liu, D.; Song, Y.; Huang, H.; Cai, W. BiO-Net: Learning Recurrent Bi-directional Connections for Encoder–Decoder Architecture. In: Medical Image Computing and Computer-Assisted Intervention (MICCAI) 2020, LNCS 12261, pp. 74–84. Springer, 2020. doi: 10.1007/978-3-030-59710-8_8.
[8]. Z. Chen, C. Li, Y. Li, and S. Li, “Self-attention in reconstruction bias U-Net for semantic segmentation of building footprints from high-resolution remote sensing images, ” Remote Sensing, vol. 13, no. 13, p. 2524, 2021. doi: 10.3390/rs13132524.
[9]. R. Timofte, E. Agustsson, L. Van Gool, M. Yang, L. Zhang, B. Lim, et al., “NTIRE 2017 Challenge on Single Image Super-Resolution: Methods and results, ” in Proc. IEEE Conf. Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 1110–1121, 2017.