References
[1]. Banerjee, M., & Rajeswari, V. D. (2023). Critical Review on the Different Roles of Exosomes in TNBC and Exosomal-Mediated Delivery of microRNA/siRNA/lncRNA and Drug Targeting Signalling Pathways in Triple-Negative Breast Cancer. Molecules (Basel, Switzerland), 28(4), 1802.
[2]. Mirzaei, S., Paskeh, M. D. A., Entezari, M., Bidooki, S. H., Ghaleh, V. J., Rezaei, S., Hejazi, E. S., Kakavand, A., Behroozaghdam, M., Movafagh, A., Taheriazam, A., Hashemi, M., & Samarghandian, S. (2023). siRNA and targeted delivery systems in breast cancer therapy. Clinical & Translational Oncology: Official Publication of the Federation of Spanish Oncology Societies and of the National Cancer Institute of Mexico, 25(5), 1167–1188.
[3]. Jiang, Y.-Z., et al. (2021). Molecular subtyping and genomic profiling expand precision medicine in refractory metastatic triple-negative breast cancer: The FUTURE trial. Cell Research, 31(2), 178–186.
[4]. Kalra, M., Tong, Y., Jones, D. R., Walsh, T., Danso, M. A., Ma, C. X., Silverman, P., King, M.-C., Badve, S. S., Perkins, S. M., & Miller, K. D. (2021). Cisplatin +/- rucaparib after preoperative chemotherapy in patients with triple-negative or BRCA mutated breast cancer. NPJ Breast Cancer, 7(1), 29.
[5]. Lu, F., et al. (2021). Efficacy and Safety of Platinum-Based Chemotherapy as First-Line Therapy for Metastatic Triple-Negative Breast Cancer: A Meta-Analysis of Randomized Controlled Trials. Technology in Cancer Research & Treatment, 20, 15330338211016369. https: //doi.org/10.1177/15330338211016369
[6]. R, Y., Yy, S., Xh, H., & S, L. (2021). The Impact of Platinum-Containing Chemotherapies in Advanced Triple-Negative Breast Cancer: Meta-Analytical Approach to Evaluating Its Efficacy and Safety. Oncology Research and Treatment, 44(6). https: //doi.org/10.1159/000515353
[7]. Iliopoulos, D., Hirsch, H. A., & Struhl, K. (2009). An epigenetic switch involving NF-κB, Lin28, Let-7 MicroRNA, and IL6 links inflammation to cell transformation. Cell, 139(4), 693-706
[8]. Liang, H., Li, F., et al. (2025). A novel peptide 66CTG stabilizes Myc proto-oncogene protein to promote triple-negative breast cancer growth. Signal Transduction and Targeted Therapy, 10(1), 217.
[9]. Bai, F., Zhang, L. H., Liu, X., Wang, C., Zheng, C., Sun, J., ... & Pei, X. H. (2021). GATA3 functions downstream of BRCA1 to suppress EMT in breast cancer. Theranostics, 11(17), 8218.
[10]. Delbridge, A. R., Grabow, S., Strasser, A., & Vaux, D. L. (2016). Thirty years of BCL-2: translating cell death discoveries into novel cancer therapies. Nature Reviews Cancer, 16(2), 99-109.
[11]. Altieri, D. C. (2008). Survivin, cancer networks and pathway-directed drug discovery. Nature Reviews Cancer, 8(1), 61-70.
[12]. Moody, S. E., Perez, D., Pan, T. C., Sarkisian, C. J., Portocarrero, C. P., Sterner, C. J., ... & Chodosh, L. A. (2005). The transcriptional repressor Snail promotes mammary tumor recurrence. Cancer cell, 8(3), 197-209.
[13]. Yang, J., Mani, S. A., Donaher, J. L., Ramaswamy, S., Itzykson, R. A., Come, C., ... & Weinberg, R. A. (2004). Twist, a master regulator of morphogenesis, plays an essential role in tumor metastasis. cell, 117(7), 927-939.
[14]. Spaderna, S., et al. (2006). A transient, EMT-linked loss of basement membranes indicates metastasis and poor survival in colorectal cancer. Gastroenterology, 131(3), 830-840.
[15]. Itoh, T., Tanioka, M., Yoshida, H., Yoshioka, T., Nishimoto, H., & Itohara, S. (1998). Reduced angiogenesis and tumor progression in gelatinase A-deficient mice. Cancer research, 58(5), 1048-1051.
[16]. Soucek, L., Whitfield, J., Martins, C. P., Finch, A. J., Murphy, D. J., Sodir, N. M., ... & Evan, G. I. (2008). Modelling Myc inhibition as a cancer therapy. Nature, 455(7213), 679-683.
[17]. Chou, J., Provot, S., & Werb, Z. (2010). GATA3 in development and cancer differentiation: cells GATA have it!. Journal of cellular physiology, 222(1), 42-49.
[18]. Tao, R., Wang, G., Fang, D. D., Zhai, G., Li, Y., Lv, J., ... & Zhai, Y. (2020). Combination of BCL-2/BCL-xL dual inhibitor APG-1252 and chemotherapeutics overcomes resistance to osimertinib in EGFR mutant NSCLC in preclinical models. Cancer Research, 80(16_Supplement), 6223-6223.
[19]. Ryan, B. M., O’Donovan, N., & Duffy, M. J. (2009). Survivin: a new target for anti-cancer therapy. Cancer treatment reviews, 35(7), 553-562.
[20]. Zhang, X., Kon, T., Wang, H., Li, F., Huang, Q., Rabbani, Z. N., ... & Li, C. Y. (2004). Enhancement of hypoxia-induced tumor cell death in vitro and radiation therapy in vivo by use of small interfering RNA targeted to hypoxia-inducible factor-1α. Cancer research, 64(22), 8139-8142.
[21]. Desgrosellier, J. S., Barnes, L. A., Shields, D. J., Huang, M., Lau, S. K., Prévost, N., ... & Cheresh, D. A. (2009). An integrin αvβ3–c-Src oncogenic unit promotes anchorage-independence and tumor progression. Nature medicine, 15(10), 1163-1169.
[22]. Vermeulen, L. M. P., De Smedt, S. C., Remaut, K., & Braeckmans, K. (2018). The proton sponge hypothesis: Fable or fact? European Journal of Pharmaceutics and Biopharmaceutics: Official Journal of Arbeitsgemeinschaft Fur Pharmazeutische Verfahrenstechnik e.V, 129, 184–190.
[23]. Alshaer, W., et al. (2018). Aptamer-guided siRNA-loaded nanomedicines for systemic gene silencing in CD-44 expressing murine triple-negative breast cancer model. Journal of Controlled Release: Official Journal of the Controlled Release Society, 271, 98–106. https: //doi.org/10.1016/j.jconrel.2017.12.022
[24]. Li, Z., Cheng, L., Xu, X., Jia, R., Zhu, S., Zhang, Q., Cheng, G., Wu, B., Liu, Z., Tong, X., Xiao, B., & Dai, F. (2024). Cuproptosis-based layer-by-layer silk fibroin nanoplatform-loaded PD-L1 siRNA combining photothermal and chemodynamic therapy against metastatic breast cancer. Materials Today. Bio, 29, 101298.
[25]. Ferreira, C. S. M., Matthews, C. S., & Missailidis, S. (2006). DNA aptamers that bind to MUC1 tumour marker: Design and characterization of MUC1-binding single-stranded DNA aptamers. Tumour Biology: The Journal of the International Society for Oncodevelopmental Biology and Medicine, 27(6), 289–301.
[26]. Jafari, R., et al. (2019). Anti-Mucin1 Aptamer-Conjugated Chitosan Nanoparticles for Targeted Co-Delivery of Docetaxel and IGF-1R siRNA to SKBR3 Metastatic Breast Cancer Cells. Iranian Biomedical Journal, 23(1), 21–33. https: //doi.org/10.29252/.23.1.21
[27]. Subhan, A., Attia, S. A., & P Torchilin, V. (2022). Targeted siRNA nanotherapeutics against breast and ovarian metastatic cancer: A comprehensive review of the literature. Nanomedicine (London, England), 17(1), 41–64.
[28]. Li, M., et al. (2022). Cationic liposomes co-deliver chemotherapeutics and siRNA for the treatment of breast cancer. European Journal of Medicinal Chemistry, 233, 114198. https: //doi.org/10.1016/j.ejmech.2022.114198
[29]. Asadi, H., et al. (2018). Novel lipid-polymer hybrid nanoparticles for siRNA delivery and IGF-1R gene silencing in breast cancer cells. Journal of Drug Delivery Science and Technology, 48, 96-105.
[30]. Sai, B. M., et al. (2024b). Therapeutic delivery of siRNA for the management of breast cancer and triple-negative breast cancer. Therapeutic Delivery, 15(11), 871–891.
[31]. Yang, Y.-Y., Zhang, W., Liu, H., Jiang, J.-J., Wang, W.-J., & Jia, Z.-Y. (2021). Cell-Penetrating Peptide-Modified Graphene Oxide Nanoparticles Loaded with Rictor siRNA for the Treatment of Triple-Negative Breast Cancer. Drug Design, Development and Therapy, 15, 4961–4972. https: //doi.org/10.2147/DDDT.S330059
[32]. Badparvar, F., Marjani, A. P., Salehi, R., & Ramezani, F. (2024). Dual pH/redox-responsive hyperbranched polymeric nanocarriers with TME-trigger size shrinkage and charge reversible ability for amplified chemotherapy of breast cancer. Scientific Reports, 14(1), 8567. https: //doi.org/10.1038/s41598-024-57296-4
[33]. Bakhtiar, A., Liew, Q. X., Ng, K. Y., & Chowdhury, E. H. (2022). Active targeting via ligand-anchored pH-responsive strontium nanoparticles for efficient nucleic acid delivery into breast cancer cells. Journal of Pharmaceutical Investigation, 52(2), 243–257. https: //doi.org/10.1007/s40005-022-00559-x
[34]. Zhang, C., et al. (2021). Co-delivery of EGFR and BRD4 siRNA by cell-penetrating peptides-modified redox-responsive complex in triple negative breast cancer cells. Life Sciences, 266, 118886.
[35]. Semple, S. C., Leone, R., Barbosa, C. J., Tam, Y. K., & Lin, P. J. C. (2022). Lipid Nanoparticle Delivery Systems to Enable mRNA-Based Therapeutics. Pharmaceutics, 14(2), 398.
[36]. Jain, R. K. (1999). Transport of molecules, particles, and cells in solid tumors. Annual Review of Biomedical Engineering, 1, 241–263. https: //doi.org/10.1146/annurev.bioeng.1.1.241
[37]. Wilhelm, S., et al. (2016). Analysis of nanoparticle delivery to tumours. Nature Reviews Materials, 1(5), 16014.
[38]. Byrne, J. D., Betancourt, T., & Brannon-Peppas, L. (2008). Active targeting schemes for nanoparticle systems in cancer therapeutics. Advanced Drug Delivery Reviews, 60(15), 1615–1626.
[39]. Daniels, T. R., et al. (2012). The transferrin receptor and the targeted delivery of therapeutic agents against cancer. Biochimica Et Biophysica Acta, 1820(3), 291–317.
[40]. Moitra, P., Skrodzki, D., Molinaro, M., Gunaseelan, N., Sar, D., Aditya, T., Dahal, D., Ray, P., & Pan, D. (2024). Context-Responsive Nanoparticle Derived from Synthetic Zwitterionic Ionizable Phospholipids in Targeted CRISPR/Cas9 Therapy for Basal-like Breast Cancer. ACS Nano, 18(12), 9199–9220.
[41]. Li, J., Dirisala, et al. (2017). Therapeutic Vesicular Nanoreactors with Tumor-Specific Activation and Self-Destruction for Synergistic Tumor Ablation. Angewandte Chemie (International Ed. in English), 56(45), 14025–14030.
[42]. Wang, Y., et al. (2014). A nanoparticle-based strategy for the imaging of a broad range of tumours by nonlinear amplification of microenvironment signals. Nature Materials, 13(2), 204–212. https: //doi.org/10.1038/nmat3819
[43]. Mura, S., Nicolas, J., & Couvreur, P. (2013). Stimuli-responsive nanocarriers for drug delivery. Nature Materials, 12(11), 991–1003. https: //doi.org/10.1038/nmat3776
[44]. Anderson, B. R., et al. (2011). Nucleoside modifications in RNA limit activation of 2’-5’-oligoadenylate synthetase and increase resistance to cleavage by RNase L. Nucleic Acids Research, 39(21), 9329–9338.
[45]. Roberts, T. C., Langer, R., & Wood, M. J. A. (2020). Advances in oligonucleotide drug delivery. Nature Reviews. Drug Discovery, 19(10), 673–694. https: //doi.org/10.1038/s41573-020-0075-7
[46]. Zhu, L., Wang, T., Perche, F., Taigind, A., & Torchilin, V. P. (2013). Enhanced anticancer activity of nanopreparation containing an MMP2-sensitive PEG-drug conjugate and cell-penetrating moiety. Proceedings of the National Academy of Sciences of the United States of America, 110(42), 17047–17052.
[47]. Dreaden, E. C., Alkilany, A. M., Huang, X., Murphy, C. J., & El-Sayed, M. A. (2012). The golden age: Gold nanoparticles for biomedicine. Chemical Society Reviews, 41(7), 2740–2779. https: //doi.org/10.1039/c1cs15237h
[48]. Khlebtsov, N., & Dykman, L. (2011). Biodistribution and toxicity of engineered gold nanoparticles: A review of in vitro and in vivo studies. Chemical Society Reviews, 40(3), 1647–1671. https: //doi.org/10.1039/c0cs00018c
[49]. Ngamcherdtrakul, W., & Yantasee, W. (2019). siRNA therapeutics for breast cancer: Recent efforts in targeting metastasis, drug resistance, and immune evasion. Translational Research: The Journal of Laboratory and Clinical Medicine, 214, 105–120. https: //doi.org/10.1016/j.trsl.2019.08.005
[50]. Morad, G., et al. (2019). Tumor-Derived Extracellular Vesicles Breach the Intact Blood-Brain Barrier via Transcytosis. ACS Nano, 13(12), 13853–13865. https: //doi.org/10.1021/acsnano.9b04397