Research Progress of siRNA Systems in Breast Cancer Therapy
Research Article
Open Access
CC BY

Research Progress of siRNA Systems in Breast Cancer Therapy

Hongyan Wang 1*
1 Shandong University
*Corresponding author: 2950197493@qq.com
Published on 23 October 2025
Journal Cover
TNS Vol.144
ISSN (Print): 2753-8826
ISSN (Online): 2753-8818
ISBN (Print): 978-1-80590-441-0
ISBN (Online): 978-1-80590-442-7
Download Cover

Abstract

Breast cancer remains the leading cause of cancer-related deaths among women globally, with treatment facing significant challenges due to drug resistance and metastasis. RNA interference technology, particularly via siRNA, offers a novel strategy for precision therapy. This review comprehensively examines the mechanisms and applications of nanotechnology-mediated siRNA delivery systems. Methodologically, it involves systematic analysis of the design principles underlying polymeric, lipid-based, and metallic nanocarriers to evaluate their efficacy in enhancing cellular uptake, promoting endosomal escape, and protecting siRNA from degradation; additionally, it combines preclinical and clinical data to evaluate these delivery platforms' pharmacodynamic characteristics and therapeutic results. Results demonstrate that siRNA nanocarriers significantly enhance targeted gene-silencing efficiency, exhibiting potent anti-tumor activity in breast cancer models. However, clinical translation is hampered by limitations in specificity, immunogenicity, and evolving regulatory frameworks. To advance clinical application, future research should focus on developing stimuli-responsive nanovectors and combining them with immunotherapy or chemotherapy regimens.

Keywords:

Breast Cancer, siRNA Delivery, Nanocarriers, Clinical Translation

View PDF
Wang,H. (2025). Research Progress of siRNA Systems in Breast Cancer Therapy. Theoretical and Natural Science,144,62-70.

References

[1]. Banerjee, M., & Rajeswari, V. D. (2023). Critical Review on the Different Roles of Exosomes in TNBC and Exosomal-Mediated Delivery of microRNA/siRNA/lncRNA and Drug Targeting Signalling Pathways in Triple-Negative Breast Cancer. Molecules (Basel, Switzerland), 28(4), 1802.

[2]. Mirzaei, S., Paskeh, M. D. A., Entezari, M., Bidooki, S. H., Ghaleh, V. J., Rezaei, S., Hejazi, E. S., Kakavand, A., Behroozaghdam, M., Movafagh, A., Taheriazam, A., Hashemi, M., & Samarghandian, S. (2023). siRNA and targeted delivery systems in breast cancer therapy. Clinical & Translational Oncology: Official Publication of the Federation of Spanish Oncology Societies and of the National Cancer Institute of Mexico, 25(5), 1167–1188.

[3]. Jiang, Y.-Z., et al. (2021). Molecular subtyping and genomic profiling expand precision medicine in refractory metastatic triple-negative breast cancer: The FUTURE trial. Cell Research, 31(2), 178–186.

[4]. Kalra, M., Tong, Y., Jones, D. R., Walsh, T., Danso, M. A., Ma, C. X., Silverman, P., King, M.-C., Badve, S. S., Perkins, S. M., & Miller, K. D. (2021). Cisplatin +/- rucaparib after preoperative chemotherapy in patients with triple-negative or BRCA mutated breast cancer. NPJ Breast Cancer, 7(1), 29.

[5]. Lu, F., et al. (2021). Efficacy and Safety of Platinum-Based Chemotherapy as First-Line Therapy for Metastatic Triple-Negative Breast Cancer: A Meta-Analysis of Randomized Controlled Trials. Technology in Cancer Research & Treatment, 20, 15330338211016369. https: //doi.org/10.1177/15330338211016369

[6]. R, Y., Yy, S., Xh, H., & S, L. (2021). The Impact of Platinum-Containing Chemotherapies in Advanced Triple-Negative Breast Cancer: Meta-Analytical Approach to Evaluating Its Efficacy and Safety. Oncology Research and Treatment, 44(6). https: //doi.org/10.1159/000515353

[7]. Iliopoulos, D., Hirsch, H. A., & Struhl, K. (2009). An epigenetic switch involving NF-κB, Lin28, Let-7 MicroRNA, and IL6 links inflammation to cell transformation. Cell, 139(4), 693-706

[8]. Liang, H., Li, F., et al. (2025). A novel peptide 66CTG stabilizes Myc proto-oncogene protein to promote triple-negative breast cancer growth. Signal Transduction and Targeted Therapy, 10(1), 217.

[9]. Bai, F., Zhang, L. H., Liu, X., Wang, C., Zheng, C., Sun, J., ... & Pei, X. H. (2021). GATA3 functions downstream of BRCA1 to suppress EMT in breast cancer. Theranostics, 11(17), 8218.

[10]. Delbridge, A. R., Grabow, S., Strasser, A., & Vaux, D. L. (2016). Thirty years of BCL-2: translating cell death discoveries into novel cancer therapies. Nature Reviews Cancer, 16(2), 99-109.

[11]. Altieri, D. C. (2008). Survivin, cancer networks and pathway-directed drug discovery. Nature Reviews Cancer, 8(1), 61-70.

[12]. Moody, S. E., Perez, D., Pan, T. C., Sarkisian, C. J., Portocarrero, C. P., Sterner, C. J., ... & Chodosh, L. A. (2005). The transcriptional repressor Snail promotes mammary tumor recurrence. Cancer cell, 8(3), 197-209.

[13]. Yang, J., Mani, S. A., Donaher, J. L., Ramaswamy, S., Itzykson, R. A., Come, C., ... & Weinberg, R. A. (2004). Twist, a master regulator of morphogenesis, plays an essential role in tumor metastasis. cell, 117(7), 927-939.

[14]. Spaderna, S., et al. (2006). A transient, EMT-linked loss of basement membranes indicates metastasis and poor survival in colorectal cancer. Gastroenterology, 131(3), 830-840.

[15]. Itoh, T., Tanioka, M., Yoshida, H., Yoshioka, T., Nishimoto, H., & Itohara, S. (1998). Reduced angiogenesis and tumor progression in gelatinase A-deficient mice. Cancer research, 58(5), 1048-1051.

[16]. Soucek, L., Whitfield, J., Martins, C. P., Finch, A. J., Murphy, D. J., Sodir, N. M., ... & Evan, G. I. (2008). Modelling Myc inhibition as a cancer therapy. Nature, 455(7213), 679-683.

[17]. Chou, J., Provot, S., & Werb, Z. (2010). GATA3 in development and cancer differentiation: cells GATA have it!. Journal of cellular physiology, 222(1), 42-49.

[18]. Tao, R., Wang, G., Fang, D. D., Zhai, G., Li, Y., Lv, J., ... & Zhai, Y. (2020). Combination of BCL-2/BCL-xL dual inhibitor APG-1252 and chemotherapeutics overcomes resistance to osimertinib in EGFR mutant NSCLC in preclinical models. Cancer Research, 80(16_Supplement), 6223-6223.

[19]. Ryan, B. M., O’Donovan, N., & Duffy, M. J. (2009). Survivin: a new target for anti-cancer therapy. Cancer treatment reviews, 35(7), 553-562.

[20]. Zhang, X., Kon, T., Wang, H., Li, F., Huang, Q., Rabbani, Z. N., ... & Li, C. Y. (2004). Enhancement of hypoxia-induced tumor cell death in vitro and radiation therapy in vivo by use of small interfering RNA targeted to hypoxia-inducible factor-1α. Cancer research, 64(22), 8139-8142.

[21]. Desgrosellier, J. S., Barnes, L. A., Shields, D. J., Huang, M., Lau, S. K., Prévost, N., ... & Cheresh, D. A. (2009). An integrin αvβ3–c-Src oncogenic unit promotes anchorage-independence and tumor progression. Nature medicine, 15(10), 1163-1169.

[22]. Vermeulen, L. M. P., De Smedt, S. C., Remaut, K., & Braeckmans, K. (2018). The proton sponge hypothesis: Fable or fact? European Journal of Pharmaceutics and Biopharmaceutics: Official Journal of Arbeitsgemeinschaft Fur Pharmazeutische Verfahrenstechnik e.V, 129, 184–190.

[23]. Alshaer, W., et al. (2018). Aptamer-guided siRNA-loaded nanomedicines for systemic gene silencing in CD-44 expressing murine triple-negative breast cancer model. Journal of Controlled Release: Official Journal of the Controlled Release Society, 271, 98–106. https: //doi.org/10.1016/j.jconrel.2017.12.022

[24]. Li, Z., Cheng, L., Xu, X., Jia, R., Zhu, S., Zhang, Q., Cheng, G., Wu, B., Liu, Z., Tong, X., Xiao, B., & Dai, F. (2024). Cuproptosis-based layer-by-layer silk fibroin nanoplatform-loaded PD-L1 siRNA combining photothermal and chemodynamic therapy against metastatic breast cancer. Materials Today. Bio, 29, 101298.

[25]. Ferreira, C. S. M., Matthews, C. S., & Missailidis, S. (2006). DNA aptamers that bind to MUC1 tumour marker: Design and characterization of MUC1-binding single-stranded DNA aptamers. Tumour Biology: The Journal of the International Society for Oncodevelopmental Biology and Medicine, 27(6), 289–301.

[26]. Jafari, R., et al. (2019). Anti-Mucin1 Aptamer-Conjugated Chitosan Nanoparticles for Targeted Co-Delivery of Docetaxel and IGF-1R siRNA to SKBR3 Metastatic Breast Cancer Cells. Iranian Biomedical Journal, 23(1), 21–33. https: //doi.org/10.29252/.23.1.21

[27]. Subhan, A., Attia, S. A., & P Torchilin, V. (2022). Targeted siRNA nanotherapeutics against breast and ovarian metastatic cancer: A comprehensive review of the literature. Nanomedicine (London, England), 17(1), 41–64.

[28]. Li, M., et al. (2022). Cationic liposomes co-deliver chemotherapeutics and siRNA for the treatment of breast cancer. European Journal of Medicinal Chemistry, 233, 114198. https: //doi.org/10.1016/j.ejmech.2022.114198

[29]. Asadi, H., et al. (2018). Novel lipid-polymer hybrid nanoparticles for siRNA delivery and IGF-1R gene silencing in breast cancer cells. Journal of Drug Delivery Science and Technology, 48, 96-105.

[30]. Sai, B. M., et al. (2024b). Therapeutic delivery of siRNA for the management of breast cancer and triple-negative breast cancer. Therapeutic Delivery, 15(11), 871–891.

[31]. Yang, Y.-Y., Zhang, W., Liu, H., Jiang, J.-J., Wang, W.-J., & Jia, Z.-Y. (2021). Cell-Penetrating Peptide-Modified Graphene Oxide Nanoparticles Loaded with Rictor siRNA for the Treatment of Triple-Negative Breast Cancer. Drug Design, Development and Therapy, 15, 4961–4972. https: //doi.org/10.2147/DDDT.S330059

[32]. Badparvar, F., Marjani, A. P., Salehi, R., & Ramezani, F. (2024). Dual pH/redox-responsive hyperbranched polymeric nanocarriers with TME-trigger size shrinkage and charge reversible ability for amplified chemotherapy of breast cancer. Scientific Reports, 14(1), 8567. https: //doi.org/10.1038/s41598-024-57296-4

[33]. Bakhtiar, A., Liew, Q. X., Ng, K. Y., & Chowdhury, E. H. (2022). Active targeting via ligand-anchored pH-responsive strontium nanoparticles for efficient nucleic acid delivery into breast cancer cells. Journal of Pharmaceutical Investigation, 52(2), 243–257. https: //doi.org/10.1007/s40005-022-00559-x

[34]. Zhang, C., et al. (2021). Co-delivery of EGFR and BRD4 siRNA by cell-penetrating peptides-modified redox-responsive complex in triple negative breast cancer cells. Life Sciences, 266, 118886.

[35]. Semple, S. C., Leone, R., Barbosa, C. J., Tam, Y. K., & Lin, P. J. C. (2022). Lipid Nanoparticle Delivery Systems to Enable mRNA-Based Therapeutics. Pharmaceutics, 14(2), 398.

[36]. Jain, R. K. (1999). Transport of molecules, particles, and cells in solid tumors. Annual Review of Biomedical Engineering, 1, 241–263. https: //doi.org/10.1146/annurev.bioeng.1.1.241

[37]. Wilhelm, S., et al. (2016). Analysis of nanoparticle delivery to tumours. Nature Reviews Materials, 1(5), 16014.

[38]. Byrne, J. D., Betancourt, T., & Brannon-Peppas, L. (2008). Active targeting schemes for nanoparticle systems in cancer therapeutics. Advanced Drug Delivery Reviews, 60(15), 1615–1626.

[39]. Daniels, T. R., et al. (2012). The transferrin receptor and the targeted delivery of therapeutic agents against cancer. Biochimica Et Biophysica Acta, 1820(3), 291–317.

[40]. Moitra, P., Skrodzki, D., Molinaro, M., Gunaseelan, N., Sar, D., Aditya, T., Dahal, D., Ray, P., & Pan, D. (2024). Context-Responsive Nanoparticle Derived from Synthetic Zwitterionic Ionizable Phospholipids in Targeted CRISPR/Cas9 Therapy for Basal-like Breast Cancer. ACS Nano, 18(12), 9199–9220.

[41]. Li, J., Dirisala, et al. (2017). Therapeutic Vesicular Nanoreactors with Tumor-Specific Activation and Self-Destruction for Synergistic Tumor Ablation. Angewandte Chemie (International Ed. in English), 56(45), 14025–14030.

[42]. Wang, Y., et al. (2014). A nanoparticle-based strategy for the imaging of a broad range of tumours by nonlinear amplification of microenvironment signals. Nature Materials, 13(2), 204–212. https: //doi.org/10.1038/nmat3819

[43]. Mura, S., Nicolas, J., & Couvreur, P. (2013). Stimuli-responsive nanocarriers for drug delivery. Nature Materials, 12(11), 991–1003. https: //doi.org/10.1038/nmat3776

[44]. Anderson, B. R., et al. (2011). Nucleoside modifications in RNA limit activation of 2’-5’-oligoadenylate synthetase and increase resistance to cleavage by RNase L. Nucleic Acids Research, 39(21), 9329–9338.

[45]. Roberts, T. C., Langer, R., & Wood, M. J. A. (2020). Advances in oligonucleotide drug delivery. Nature Reviews. Drug Discovery, 19(10), 673–694. https: //doi.org/10.1038/s41573-020-0075-7

[46]. Zhu, L., Wang, T., Perche, F., Taigind, A., & Torchilin, V. P. (2013). Enhanced anticancer activity of nanopreparation containing an MMP2-sensitive PEG-drug conjugate and cell-penetrating moiety. Proceedings of the National Academy of Sciences of the United States of America, 110(42), 17047–17052.

[47]. Dreaden, E. C., Alkilany, A. M., Huang, X., Murphy, C. J., & El-Sayed, M. A. (2012). The golden age: Gold nanoparticles for biomedicine. Chemical Society Reviews, 41(7), 2740–2779. https: //doi.org/10.1039/c1cs15237h

[48]. Khlebtsov, N., & Dykman, L. (2011). Biodistribution and toxicity of engineered gold nanoparticles: A review of in vitro and in vivo studies. Chemical Society Reviews, 40(3), 1647–1671. https: //doi.org/10.1039/c0cs00018c

[49]. Ngamcherdtrakul, W., & Yantasee, W. (2019). siRNA therapeutics for breast cancer: Recent efforts in targeting metastasis, drug resistance, and immune evasion. Translational Research: The Journal of Laboratory and Clinical Medicine, 214, 105–120. https: //doi.org/10.1016/j.trsl.2019.08.005

[50]. Morad, G., et al. (2019). Tumor-Derived Extracellular Vesicles Breach the Intact Blood-Brain Barrier via Transcytosis. ACS Nano, 13(12), 13853–13865. https: //doi.org/10.1021/acsnano.9b04397

Cite this article

Wang,H. (2025). Research Progress of siRNA Systems in Breast Cancer Therapy. Theoretical and Natural Science,144,62-70.

Data availability

The datasets used and/or analyzed during the current study will be available from the authors upon reasonable request.

About volume

Volume title: Proceedings of ICBioMed 2025 Symposium: AI for Healthcare: Advanced Medical Data Analytics and Smart Rehabilitation

ISBN: 978-1-80590-441-0(Print) / 978-1-80590-442-7(Online)
Editor: Alan Wang
Conference date: 17 October 2025
Series: Theoretical and Natural Science
Volume number: Vol.144
ISSN: 2753-8818(Print) / 2753-8826(Online)