Investigating the impact of CFT7455 on activating pro-apoptotic genes, promoting apoptosis and treating Diffuse Large B-Cell Lymphoma
Research Article
Open Access
CC BY

Investigating the impact of CFT7455 on activating pro-apoptotic genes, promoting apoptosis and treating Diffuse Large B-Cell Lymphoma

Yang Wu 1*
1 Zhenhai High School A-Level Centre
*Corresponding author: 15968464404@163.com
Published on 23 October 2025
Journal Cover
TNS Vol.144
ISSN (Print): 2753-8826
ISSN (Online): 2753-8818
ISBN (Print): 978-1-80590-441-0
ISBN (Online): 978-1-80590-442-7
Download Cover

Abstract

Diffuse Large B-Cell Lymphoma (DLBCL) usually occurs due to an overexpression of BCL6 protein. However, the indirect inhibition of BCL6 remains challenging. This work mainly aims to investigate the impact of BCL6-targeted PROTAC medicine--CFT7455 on degrading BCL6 and removing DLBCL tumour cells. By using SU-DHL-4 cell line and treating these cells with CFT7455 in different concentrations with different treatment durations, CFT7455’ function could be tested. MTT assay is used to test cell viability. And Western Blot is used to detect BCL6 protein level. TUNNEL assay and Annexin V/PI assay are used to validate apoptosis. The results could show that CFT7455 might induce potent, dose-and time-dependent BCL6 degradation. This degradation would lead to a significant decrease in cell activities and an increase in apoptosis at the same time. These findings may suggest the potential of CFT7455 as a treatment of BCL6-driven DLBCL, promoting the further development of it.

Keywords:

PROTACs, BCL6, Diffuse Large B-Cell Lymphoma, Targeted protein degradation, Apoptosis

View PDF
Wu,Y. (2025). Investigating the impact of CFT7455 on activating pro-apoptotic genes, promoting apoptosis and treating Diffuse Large B-Cell Lymphoma. Theoretical and Natural Science,144,32-43.

References

[1]. Susanibar-Adaniya, S., & Barta, S. K. (2021). 2021 update on diffuse large B cell lymphoma: A review of current data and potential applications on risk stratification and management. American Journal of Hematology, 96 (8), 956-970. https: //doi. org/10. 1002/ajh. 26208

[2]. Li, X., Pu, W., Zheng, Q., Ai, M., Chen, S., & Peng, Y. (2021). Proteolysis-targeting chimeras (PROTACs) in cancer therapy. Journal of Hematology & Oncology, 14 (1), 148. https: //doi. org/10. 1186/s13045-021-01156-8

[3]. Padala, S. A., & Kallam, A. (2022). Diffuse large B-cell lymphoma. In StatPearls. StatPearls Publishing. https: //www. ncbi. nlm. nih. gov/books/NBK560746/

[4]. Liongue, C., Almohaisen, F. L. J., & Ward, A. C. (2016). B cell lymphoma 6 (BCL6): A conserved regulator of immunity and beyond. Cellular & Molecular Immunology, 13 (3), 263-275. https: //doi. org/10. 1038/cmi. 2015. 97

[5]. McLachlan, T., Matthews, W. C., Jackson, E. R., Staudt, D. E., Douglas, A. M., Findlay, I. J., Persson, M. L., Duchatel, R. J., Mannan, A., Germon, Z. P., & Dun, M. D. (2021). B-cell lymphoma 6 (BCL6): From master regulator of humoral immunity to oncogenic driver in pediatric cancers. Frontiers in Oncology, 11, 687864. https: //doi. org/10. 3389/fonc. 2021. 687864

[6]. Kurz, K. S., Ott, M., Kalmbach, S., Steinlein, S., Kalla, C., Horn, H., Ott, G., & Staiger, A. M. (2022). Large B-cell lymphomas in the 5th edition of the WHO-classification of haematolymphoid neoplasms—Updated classification and new concepts. Pathology & Oncology Research, 28 (3), 1609256. https: //doi. org/10. 1007/s12253-022-00983-6

[7]. Słabicki, M. , Yoon, H. , Koeppel, J. , Nitsch, L. , Roy Burman, S. S. , Di Genua, C. , Donovan, K. A. , Sperling, A. S. , Hunkeler, M. , Tsai, J. M. , Sharma, R. , Guirguis, A. , Zou, C. , Chudasama, P. , Gasser, J. A. , Miller, P. G. , Scholl, C. , Fröhling, S. , Nowak, R. P. , Fischer, E. S. , & Ebert, B. L. (2020). Small-molecule-induced polymerization triggers degradation of BCL6. Nature, 585 (7825), 404-409. https: //doi. org/10. 1038/s41586-020-2702-9

[8]. Jank, T., Bogdanović, X., Wirth, C., Haaf, E., Spoerner, M., Böhmer, K. E., Steinemann, M., Orth, J. H. C., Kalbitzer, H. R., Warscheid, B., Hunte, C., & Aktories, K. (2007). A bacterial toxin catalyzing tyrosine glycosylation of Rho and deamidation of Gq and Gi proteins. The Journal of Biological Chemistry, 282 (22), 16157-16167. https: //doi. org/10. 1074/jbc. M611619200

[9]. Mosmann, T. (1983). Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. Journal of Immunological Methods, 65 (1-2), 55–63. https: //doi. org/10. 1016/0022-1759 (83)90303-4

[10]. Gavrieli, Y., Sherman, Y., & Ben-Sasson, S. A. (1992). Identification of programmed cell death in situ via specific labeling of nuclear DNA fragmentation. The Journal of Cell Biology, 119 (3), 493–501. https: //doi. org/10. 1083/jcb. 119. 3. 493

[11]. Vermes, I., Haanen, C., Steffens-Nakken, H., & Reutelingsperger, C. (1995). A novel assay for apoptosis. Flow cytometric detection of phosphatidylserine expression on early apoptotic cells using fluorescein labeled Annexin V. Journal of Immunological Methods, 184 (1), 39–51. https: //doi. org/10. 1016/0022-1759 (95)00072-i

[12]. Vandenabeele, P., Galluzzi, L., Vanden Berghe, T., & Kroemer, G. (2010). Regulated necrosis: The expanding network of non-apoptotic cell death pathways. Nature Reviews Molecular Cell Biology, 11 (10), 700–714. https: //doi. org/10. 1038/nrm2970

[13]. Murphy, K. M., Travers, P., & Walport, M. (2013). Janeway's Immunobiology (8th ed. ). Immunological Reviews, 252 (1), 105–117. https: //doi. org/10. 1111/imr. 12066

[14]. Lartigue, L., et al. (2009). TSC-22D1 isoforms have opposing roles in mammary epithelial cell survival. Cell Death & Differentiation, 17 (2), 304–315. https: //doi. org/10. 1038/cdd. 2009. 126

[15]. Galluzzi, L., Vitale, I., Aaronson, S. A., et al. (2018). Molecular mechanisms of cell death: Recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death & Differentiation, 25 (3), 486–541. https: //doi. org/10. 1038/s41418-017-0012-4

[16]. Bondeson, D. P., et al. (2015). Inhibition of the NLRP3 inflammasome by small-molecule agonists of SIRT2. Nature Chemical Biology, 11 (12), 933–941. https: //doi. org/10. 1038/nchembio. 1958

[17]. Clevers, H. (2006). Stem cells, crypts, and colorectal cancer. Cell, 127 (2), 469–480. https: //doi. org/10. 1016/j. cell. 2006. 01. 034

[18]. Salic, A., & Mitchison, T. J. (2008). A chemical method for fast and sensitive detection of DNA synthesis in vivo. Proceedings of the National Academy of Sciences of the United States of America, 105 (14), 5411–5416. https: //doi. org/10. 1073/pnas. 0709258105

[19]. Stockwell, B. R., et al. (2017). Ferroptosis: A regulated cell death nexus linking metabolism, redox biology, and disease. Cell, 171 (2), 273–285. https: //doi. org/10. 1016/j. cell. 2017. 09. 021

[20]. Evan, G. I., Wyllie, A. H., Gilbert, C. S., et al. (1992). Induction of apoptosis in fibroblasts by c-Myc protein. Cell, 69 (1), 119–128. https: //doi. org/10. 1016/0092-8674 (92)90380-9

[21]. Dang, C. V. (2012). MYC on the path to cancer. Cell, 149 (1), 27–38. https: //doi. org/10. 1016/j. cell. 2012. 05. 017

[22]. Pommier, Y., Leo, E., Zhang, H., & Marchand, C. (2010). DNA topoisomerases and their poisoning by anticancer and antibacterial drugs. Nature Reviews Cancer, 10 (6), 425–434. https: //doi. org/10. 1038/nrc2843

[23]. Rogakou, E. P., Pilch, D. R., Orr, A. H., Ivanova, V. S., & Bonner, W. M. (1998). DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139. The Journal of Biological Chemistry, 273 (10), 5858–5868. https: //doi. org/10. 1074/jbc. 273. 10. 5858

[24]. Geserick, P., et al. (2009). TRAIL-R2 is essential for apoptosis induction by oncolytic viruses in tumor cells. Cell Death & Differentiation, 16 (7), 947–955. https: //doi. org/10. 1038/cdd. 2009. 19

[25]. Lavrik, I. N., Golks, A., & Krammer, P. H. (2005). Death receptor signaling. Oncogene, 24 (48), 7461–7472. https: //doi. org/10. 1038/sj. onc. 1209097 (https: //doi. org/10. 1038/sj. onc. 1209097)

[26]. Newton, K., Thomas, G. J., & Kanneganti, T. D. (2014). The Kinase NEK7 Links Inflammasome Activation to Cell Cycle Control. Cell Reports, 9 (5), 2304–2314. https: //doi. org/10. 1016/j. celrep. 2014. 08. 012

[27]. Sherr, C. J., & Roberts, J. M. (1995). p53 and the p21 Cdk Inhibitor in Cell Cycle Control and Cancer. Genes & Development, 9 (10), 1149–1163. https: //doi. org/10. 1101/gad. 9. 10. 1149

[28]. Cerchietti, L. C., Gandhi, V., Tam, W., et al. (2010). A Small-Molecule Inhibitor of MDM2 Ubiquitination Stabilizes p53 and Induces Tumor Regression. Nature Medicine, 16 (12), 1318–1324. https: //doi. org/10. 1038/nm. 2184

[29]. Cimprich, K. A., & Cortez, D. (2007). ATR: An Essential Regulator of Genome Integrity. Nature Reviews Molecular Cell Biology, 8 (9), 616–627. https: //doi. org/10. 1038/nrm2199

[30]. Suzuki, H., Kayagaki, N., Warming, S., et al. (2013). Non-Canonical Activation of NLRP3 Inflammasome by Caspase-11 Mediates LPS-Induced Lethal Shock. Nature, 501 (7467), 502–506. https: //doi. org/10. 1038/nature12329

[31]. Bader, J. J., Brown, J. M., & Jackson, S. P. (2020). Targeting the DNA Damage Response in Cancer. Nature Reviews Drug Discovery, 19 (3), 151–178. https: //doi. org/10. 1038/s41573-019-0047-y

[32]. Kisselev, A. F., Callard, A., & Goldberg, A. L. (2003). The Role of the Active Site Threonine in Proteasome Catalysis. The Journal of Biological Chemistry, 278 (21), 18845–18851. https: //doi. org/10. 1074/jbc. M300059200

Cite this article

Wu,Y. (2025). Investigating the impact of CFT7455 on activating pro-apoptotic genes, promoting apoptosis and treating Diffuse Large B-Cell Lymphoma. Theoretical and Natural Science,144,32-43.

Data availability

The datasets used and/or analyzed during the current study will be available from the authors upon reasonable request.

About volume

Volume title: Proceedings of ICBioMed 2025 Symposium: AI for Healthcare: Advanced Medical Data Analytics and Smart Rehabilitation

ISBN: 978-1-80590-441-0(Print) / 978-1-80590-442-7(Online)
Editor: Alan Wang
Conference date: 17 October 2025
Series: Theoretical and Natural Science
Volume number: Vol.144
ISSN: 2753-8818(Print) / 2753-8826(Online)