References
[1]. Susanibar-Adaniya, S., & Barta, S. K. (2021). 2021 update on diffuse large B cell lymphoma: A review of current data and potential applications on risk stratification and management. American Journal of Hematology, 96 (8), 956-970. https: //doi. org/10. 1002/ajh. 26208
[2]. Li, X., Pu, W., Zheng, Q., Ai, M., Chen, S., & Peng, Y. (2021). Proteolysis-targeting chimeras (PROTACs) in cancer therapy. Journal of Hematology & Oncology, 14 (1), 148. https: //doi. org/10. 1186/s13045-021-01156-8
[3]. Padala, S. A., & Kallam, A. (2022). Diffuse large B-cell lymphoma. In StatPearls. StatPearls Publishing. https: //www. ncbi. nlm. nih. gov/books/NBK560746/
[4]. Liongue, C., Almohaisen, F. L. J., & Ward, A. C. (2016). B cell lymphoma 6 (BCL6): A conserved regulator of immunity and beyond. Cellular & Molecular Immunology, 13 (3), 263-275. https: //doi. org/10. 1038/cmi. 2015. 97
[5]. McLachlan, T., Matthews, W. C., Jackson, E. R., Staudt, D. E., Douglas, A. M., Findlay, I. J., Persson, M. L., Duchatel, R. J., Mannan, A., Germon, Z. P., & Dun, M. D. (2021). B-cell lymphoma 6 (BCL6): From master regulator of humoral immunity to oncogenic driver in pediatric cancers. Frontiers in Oncology, 11, 687864. https: //doi. org/10. 3389/fonc. 2021. 687864
[6]. Kurz, K. S., Ott, M., Kalmbach, S., Steinlein, S., Kalla, C., Horn, H., Ott, G., & Staiger, A. M. (2022). Large B-cell lymphomas in the 5th edition of the WHO-classification of haematolymphoid neoplasms—Updated classification and new concepts. Pathology & Oncology Research, 28 (3), 1609256. https: //doi. org/10. 1007/s12253-022-00983-6
[7]. Słabicki, M. , Yoon, H. , Koeppel, J. , Nitsch, L. , Roy Burman, S. S. , Di Genua, C. , Donovan, K. A. , Sperling, A. S. , Hunkeler, M. , Tsai, J. M. , Sharma, R. , Guirguis, A. , Zou, C. , Chudasama, P. , Gasser, J. A. , Miller, P. G. , Scholl, C. , Fröhling, S. , Nowak, R. P. , Fischer, E. S. , & Ebert, B. L. (2020). Small-molecule-induced polymerization triggers degradation of BCL6. Nature, 585 (7825), 404-409. https: //doi. org/10. 1038/s41586-020-2702-9
[8]. Jank, T., Bogdanović, X., Wirth, C., Haaf, E., Spoerner, M., Böhmer, K. E., Steinemann, M., Orth, J. H. C., Kalbitzer, H. R., Warscheid, B., Hunte, C., & Aktories, K. (2007). A bacterial toxin catalyzing tyrosine glycosylation of Rho and deamidation of Gq and Gi proteins. The Journal of Biological Chemistry, 282 (22), 16157-16167. https: //doi. org/10. 1074/jbc. M611619200
[9]. Mosmann, T. (1983). Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. Journal of Immunological Methods, 65 (1-2), 55–63. https: //doi. org/10. 1016/0022-1759 (83)90303-4
[10]. Gavrieli, Y., Sherman, Y., & Ben-Sasson, S. A. (1992). Identification of programmed cell death in situ via specific labeling of nuclear DNA fragmentation. The Journal of Cell Biology, 119 (3), 493–501. https: //doi. org/10. 1083/jcb. 119. 3. 493
[11]. Vermes, I., Haanen, C., Steffens-Nakken, H., & Reutelingsperger, C. (1995). A novel assay for apoptosis. Flow cytometric detection of phosphatidylserine expression on early apoptotic cells using fluorescein labeled Annexin V. Journal of Immunological Methods, 184 (1), 39–51. https: //doi. org/10. 1016/0022-1759 (95)00072-i
[12]. Vandenabeele, P., Galluzzi, L., Vanden Berghe, T., & Kroemer, G. (2010). Regulated necrosis: The expanding network of non-apoptotic cell death pathways. Nature Reviews Molecular Cell Biology, 11 (10), 700–714. https: //doi. org/10. 1038/nrm2970
[13]. Murphy, K. M., Travers, P., & Walport, M. (2013). Janeway's Immunobiology (8th ed. ). Immunological Reviews, 252 (1), 105–117. https: //doi. org/10. 1111/imr. 12066
[14]. Lartigue, L., et al. (2009). TSC-22D1 isoforms have opposing roles in mammary epithelial cell survival. Cell Death & Differentiation, 17 (2), 304–315. https: //doi. org/10. 1038/cdd. 2009. 126
[15]. Galluzzi, L., Vitale, I., Aaronson, S. A., et al. (2018). Molecular mechanisms of cell death: Recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death & Differentiation, 25 (3), 486–541. https: //doi. org/10. 1038/s41418-017-0012-4
[16]. Bondeson, D. P., et al. (2015). Inhibition of the NLRP3 inflammasome by small-molecule agonists of SIRT2. Nature Chemical Biology, 11 (12), 933–941. https: //doi. org/10. 1038/nchembio. 1958
[17]. Clevers, H. (2006). Stem cells, crypts, and colorectal cancer. Cell, 127 (2), 469–480. https: //doi. org/10. 1016/j. cell. 2006. 01. 034
[18]. Salic, A., & Mitchison, T. J. (2008). A chemical method for fast and sensitive detection of DNA synthesis in vivo. Proceedings of the National Academy of Sciences of the United States of America, 105 (14), 5411–5416. https: //doi. org/10. 1073/pnas. 0709258105
[19]. Stockwell, B. R., et al. (2017). Ferroptosis: A regulated cell death nexus linking metabolism, redox biology, and disease. Cell, 171 (2), 273–285. https: //doi. org/10. 1016/j. cell. 2017. 09. 021
[20]. Evan, G. I., Wyllie, A. H., Gilbert, C. S., et al. (1992). Induction of apoptosis in fibroblasts by c-Myc protein. Cell, 69 (1), 119–128. https: //doi. org/10. 1016/0092-8674 (92)90380-9
[21]. Dang, C. V. (2012). MYC on the path to cancer. Cell, 149 (1), 27–38. https: //doi. org/10. 1016/j. cell. 2012. 05. 017
[22]. Pommier, Y., Leo, E., Zhang, H., & Marchand, C. (2010). DNA topoisomerases and their poisoning by anticancer and antibacterial drugs. Nature Reviews Cancer, 10 (6), 425–434. https: //doi. org/10. 1038/nrc2843
[23]. Rogakou, E. P., Pilch, D. R., Orr, A. H., Ivanova, V. S., & Bonner, W. M. (1998). DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139. The Journal of Biological Chemistry, 273 (10), 5858–5868. https: //doi. org/10. 1074/jbc. 273. 10. 5858
[24]. Geserick, P., et al. (2009). TRAIL-R2 is essential for apoptosis induction by oncolytic viruses in tumor cells. Cell Death & Differentiation, 16 (7), 947–955. https: //doi. org/10. 1038/cdd. 2009. 19
[25]. Lavrik, I. N., Golks, A., & Krammer, P. H. (2005). Death receptor signaling. Oncogene, 24 (48), 7461–7472. https: //doi. org/10. 1038/sj. onc. 1209097 (https: //doi. org/10. 1038/sj. onc. 1209097)
[26]. Newton, K., Thomas, G. J., & Kanneganti, T. D. (2014). The Kinase NEK7 Links Inflammasome Activation to Cell Cycle Control. Cell Reports, 9 (5), 2304–2314. https: //doi. org/10. 1016/j. celrep. 2014. 08. 012
[27]. Sherr, C. J., & Roberts, J. M. (1995). p53 and the p21 Cdk Inhibitor in Cell Cycle Control and Cancer. Genes & Development, 9 (10), 1149–1163. https: //doi. org/10. 1101/gad. 9. 10. 1149
[28]. Cerchietti, L. C., Gandhi, V., Tam, W., et al. (2010). A Small-Molecule Inhibitor of MDM2 Ubiquitination Stabilizes p53 and Induces Tumor Regression. Nature Medicine, 16 (12), 1318–1324. https: //doi. org/10. 1038/nm. 2184
[29]. Cimprich, K. A., & Cortez, D. (2007). ATR: An Essential Regulator of Genome Integrity. Nature Reviews Molecular Cell Biology, 8 (9), 616–627. https: //doi. org/10. 1038/nrm2199
[30]. Suzuki, H., Kayagaki, N., Warming, S., et al. (2013). Non-Canonical Activation of NLRP3 Inflammasome by Caspase-11 Mediates LPS-Induced Lethal Shock. Nature, 501 (7467), 502–506. https: //doi. org/10. 1038/nature12329
[31]. Bader, J. J., Brown, J. M., & Jackson, S. P. (2020). Targeting the DNA Damage Response in Cancer. Nature Reviews Drug Discovery, 19 (3), 151–178. https: //doi. org/10. 1038/s41573-019-0047-y
[32]. Kisselev, A. F., Callard, A., & Goldberg, A. L. (2003). The Role of the Active Site Threonine in Proteasome Catalysis. The Journal of Biological Chemistry, 278 (21), 18845–18851. https: //doi. org/10. 1074/jbc. M300059200