References
[1]. Janiesch, C., Zschech, P., & Heinrich, K. (2021). Machine learning and deep learning. Electronic Markets, 31(3), 685-695. https: //doi.org/10.1007/s12525-021-00459-5
[2]. Sharifani, K., & Amini, M. (2023). Machine learning and deep learning: A review of methods and applications. World Information Technology and Engineering Journal, 10(07), 3897-3904. https: //doi.org/10.18063/witej.v10i07.3897
[3]. Sharma, N., Sharma, R., & Jindal, N. (2021). Machine learning and deep learning applications-a vision. Global Transitions Proceedings, 2(1), 24-28. https: //doi.org/10.1016/j.glt.2021.09.004
[4]. Goar, V., & Yadav, N. S. (2024). Foundations of machine learning. In Intelligent Optimization Techniques for Business Analytics (pp. 25-48). IGI Global. https: //doi.org/10.4018/978-1-7998-8105-9.ch002
[5]. Wang, J., & Wu, S.-G. (2023). Breast cancer: An overview of current therapeutic strategies, challenges, and perspectives. Breast Cancer: Targets and Therapy, 721-730. https: //doi.org/10.2147/BCTT.S411789
[6]. Tiwari, A. (2022). Supervised learning: From theory to applications. In Artificial Intelligence and Machine Learning for EDGE Computing (pp. 23-32). Academic Press. https: //doi.org/10.1016/B978-0-12-819187-2.00003-7
[7]. Ghavidel, A., & Pazos, P. (2025). Machine learning (ML) techniques to predict breast cancer in imbalanced datasets: A systematic review. Journal of Cancer Survivorship, 19(1), 270-294. https: //doi.org/10.1007/s11764-025-01145-7
[8]. Meliboev, A., Alikhanov, J., & Kim, W. (2022). Performance evaluation of deep learning based network intrusion detection system across multiple balanced and imbalanced datasets. Electronics, 11(4), 515. https: //doi.org/10.3390/electronics11040515
[9]. Das, A. (2024). Logistic regression. In Encyclopedia of Quality of Life and Well-Being Research (pp. 3985-3986). Springer International Publishing. https: //doi.org/10.1007/978-3-319-69909-7_1504
[10]. Hassanipour, S., et al. (2019). Comparison of artificial neural network and logistic regression models for prediction of outcomes in trauma patients: A systematic review and meta-analysis. Injury, 50(2), 244-250. https: //doi.org/10.1016/j.injury.2018.09.019
[11]. Géron, A. (2022). Hands-on machine learning with Scikit-Learn, Keras, and TensorFlow: Concepts, tools, and techniques to build intelligent systems. O'Reilly Media, Inc.
[12]. Ying, X. (2019). An overview of overfitting and its solutions. Journal of Physics: Conference Series, 1168, 012013. https: //doi.org/10.1088/1742-6596/1168/1/012013
[13]. Montesinos López, O. A., Montesinos López, A., & Crossa, J. (2022). Overfitting, model tuning, and evaluation of prediction performance. In Multivariate Statistical Machine Learning Methods for Genomic Prediction (pp. 109-139). Springer International Publishing. https: //doi.org/10.1007/978-3-030-75622-8_5