Research Advances in Liposomes for Antitumor Therapy
Research Article
Open Access
CC BY

Research Advances in Liposomes for Antitumor Therapy

Yuxu Guo 1*
1 China Pharmaceutical University
*Corresponding author: 13376352867@163.com
Published on 14 October 2025
Journal Cover
TNS Vol.141
ISSN (Print): 2753-8826
ISSN (Online): 2753-8818
ISBN (Print): 978-1-80590-395-6
ISBN (Online): 978-1-80590-396-3
Download Cover

Abstract

As a classic nanocarrier delivery system, liposomes significantly enhance drug stability and bioavailability. By prolonging in vivo circulation time and improving tumor-targeting capability, they exhibit unique advantages and considerable value in cancer treatment. This review outlines the basic composition and common preparation methods of liposomes, and systematically introduces their classifications and respective characteristics. It highlights recent advances in liposome applications for treating breast cancer, lung cancer, and glioma, discusses key challenges in clinical translation, and offers perspectives on improving therapeutic efficacy and safety through optimized preparation processes, novel materials, and innovative drug delivery strategies.

Keywords:

liposomes, cancer therapy, nanocarrier drug delivery system, targeted therapy

View PDF
Guo,Y. (2025). Research Advances in Liposomes for Antitumor Therapy. Theoretical and Natural Science,141,75-84.

References

[1]. Siegel, R. L., Kratzer, T. B., Giaquinto, A. N., Sung, H., & Jemal, A. (2025). Cancer statistics, 2025. CA: A Cancer Journal for Clinicians, 75(1), 10–45.

[2]. Bangham, A. D., Hill, M. W., & Miller, N. G. A. (n.d.). Preparation and use of liposomes as models of biological membranes.

[3]. Large, D. E., Abdelmessih, R. G., Fink, E. A., & Auguste, D. T. (2021). Liposome composition in drug delivery design, synthesis, characterization, and clinical application. Advanced Drug Delivery Reviews, 176, 113851.

[4]. Akbarzadeh, A., Rezaei-Sadabady, R., Davaran, S., Joo, S. W., Zarghami, N., Hanifehpour, Y., Samiei, M., Kouhi, M., & Nejati-Koshki, K. (2013). Liposome: Classification, preparation, and applications. Nanoscale Research Letters, 8(1), 102.

[5]. Ibrahim, M. (2022). Polyethylene glycol (PEG): The nature, immunogenicity, and role in the hypersensitivity of PEGylated products. Journal of Controlled Release.

[6]. Mufamadi, M. S., Pillay, V., Choonara, Y. E., Du Toit, L. C., Modi, G., Naidoo, D., & Ndesendo, V. M. K. (2011). A review on composite liposomal technologies for specialized drug delivery. Journal of Drug Delivery, 2011, 1–19.

[7]. Sang, R., Stratton, B., Engel, A., & Deng, W. (2021). Liposome technologies towards colorectal cancer therapeutics. Acta Biomaterialia, 127, 24–40.

[8]. Jesorka, A., & Orwar, O. (2008). Liposomes: Technologies and analytical applications. Annual Review of Analytical Chemistry, 1(1), 801–832.

[9]. Gulati, M., Grover, M., Singh, S., & Singh, M. (1998). Lipophilic drug derivatives in liposomes. International Journal of Pharmaceutics, 165(2), 129–168.

[10]. Rideau, E., Dimova, R., Schwille, P., Wurm, F. R., & Landfester, K. (2018). Liposomes and polymersomes: A comparative review towards cell mimicking. Chemical Society Reviews, 47(23), 8572–8610.

[11]. Nogueira, E., Gomes, A. C., Preto, A., & Cavaco-Paulo, A. (2015). Design of liposomal formulations for cell targeting. Colloids and Surfaces, B: Biointerfaces, 136, 514–526.

[12]. D’Souza, G. G. M., & Zhang, H. (Eds.). (2023). Liposomes: Methods and protocols (Vol. 2622). Springer US.

[13]. Ajeeshkumar, K. K., Aneesh, P. A., Raju, N., Suseela, M., Ravishankar, C. N., & Benjakul, S. (2021). Advancements in liposome technology: Preparation techniques and applications in food, functional foods, and bioactive delivery: A review. Comprehensive Reviews in Food Science and Food Safety, 20(2), 1280–1306.

[14]. Yun, J.-S., Hwangbo, S.-A., & Jeong, Y.-G. (2023). Preparation of Uniform Nano Liposomes Using Focused Ultrasonic Technology. Nanomaterials, 13(19), 2618.

[15]. Kim, E., Graceffa, O., Broweleit, R., Ladha, A., Boies, A., & Rawle, R. J. (2024). Lipid loss and compositional change during preparation of liposomes by common biophysical methods. Biophysics.

[16]. Vitali, A., Paolicelli, P., Bigi, B., Trilli, J., Di Muzio, L., Carriero, V. C., Casadei, M. A., & Petralito, S. (2024). Liposome encapsulation of the palmitoyl–KTTKS peptide: Structural and functional characterization. Pharmaceutics, 16(2), 219.

[17]. Abedi Cham Heidari, Z., Ghanbarikondori, P., Mortazavi Mamaghani, E., Hheidari, A., Saberian, E., Mozaffari, E., Alizadeh, M., & Allahyartorkaman, M. (2023). Characteristics and cytotoxic effects of nano-liposomal paclitaxel on gastric cancer cells. Asian Pacific Journal of Cancer Prevention, 24(9), 3291–3296.

[18]. Wang, B., Xu, Q., Zhou, C., & Lin, Y. (2021). Liposomes co-loaded with ursolic acid and ginsenoside Rg3 in the treatment of hepatocellular carcinoma. Acta Biochimica Polonica.

[19]. Ashrafzadeh, M. S., Akbarzadeh, A., Heydarinasab, A., & Ardjmand, M. (2020). In vivo glioblastoma therapy using targeted liposomal cisplatin. International Journal of Nanomedicine, Volume 15, 7035–7049.

[20]. Wehrle, N., Tran, L. M., Zheng, A., Pissay, R., & Park, Y. C. (2024). Effect of solvent and cholesterol on liposome production by the reverse-phase evaporation (RPE) method. Langmuir, 40(44), 23521–23528.

[21]. López, R. R., G. Font De Rubinat, P., Sánchez, L.-M., Tsering, T., Alazzam, A., Bergeron, K.-F., Mounier, C., Burnier, J. V., Stiharu, I., & Nerguizian, V. (2021). The effect of different organic solvents in liposome properties produced in a periodic disturbance mixer: Transcutol®, a potential organic solvent replacement. Colloids and Surfaces, B: Biointerfaces, 198, 111447.

[22]. Karim, A. S., & Jewett, M. C. (Eds.). (2022). Cell-free gene expression: Methods and protocols (Vol. 2433). Springer US.

[23]. Zhou, L., Xie, H., Chen, X., Wan, J., Xu, S., Han, Y., Chen, D., Qiao, Y., Zhou, L., Zheng, S., & Wang, H. (2020). Dimerization-induced self-assembly of a redox-responsive prodrug into nanoparticles for improved therapeutic index. Acta Biomaterialia, 113, 464–477.

[24]. Alavi, S. E., Raza, A., Koohi Moftakhari Esfahani, M., Akbarzadeh, A., Abdollahi, S. H., & Ebrahimi Shahmabadi, H. (2022). Carboplatin niosomal nanoplatform for potentiated chemotherapy. Journal of Pharmaceutical Sciences, 111(11), 3029–3037.

[25]. Tang, H., Xie, Y., Zhu, M., Jia, J., Liu, R., Shen, Y., Zheng, Y., Guo, X., Miao, D., & Pei, J. (2022). Estrone-conjugated PEGylated liposome Co-loaded paclitaxel and carboplatin improve anti-tumor efficacy in ovarian cancer and reduce acute toxicity of chemo-drugs. International Journal of Nanomedicine, Volume 17, 3013–3041.

[26]. Zhang, Z.-A., Xin, X., Liu, C., Liu, Y., Duan, H.-X., Qi, L., Zhang, Y.-Y., Zhao, H., Chen, L.-Q., Jin, M.-J., Gao, Z.-G., & Huang, W. (2021). Novel brain-targeted nanomicelles for anti-glioma therapy mediated by the ApoE-enriched protein corona in vivo. Journal of Nanobiotechnology, 19(1), 453.

[27]. Yang, Y., Chu, Y., Li, C., Fan, L., Lu, H., Zhan, C., & Zhang, Z. (2024). Brain-targeted drug delivery by in vivo functionalized liposome with stable D-peptide ligand. Journal of Controlled Release, 373, 240–251.

[28]. Li, P., Li, J., Cheng, J., Huang, J., Li, J., Xiao, J., & Duan, X. (2025). Hypoxia-responsive liposome enhances intracellular delivery of photosensitizer for effective photodynamic therapy. Journal of Controlled Release, 377, 277–287.

[29]. Turánek, J., Kosztyu, P., Turánek Knötigová, P., Bartheldyová, E., Hubatka, F., Odehnalová, N., Mikulík, R., Vaškovicová, N., Čelechovská, H., Kratochvílová, I., Fekete, L., Tavares, M. R., Chytil, P., Raška, M., & Etrych, T. (2024). Long circulating liposomal platform utilizing hydrophilic polymer-based surface modification: Preparation, characterisation, and biological evaluation. International Journal of Pharmaceutics, 661, 124465.

[30]. Aghdam, M. A., Bagheri, R., Mosafer, J., Baradaran, B., Hashemzaei, M., Baghbanzadeh, A., Guardia, M. de la, & Mokhtarzadeh, A. (2019). Recent advances on thermosensitive and pH-sensitive liposomes employed in controlled release. Journal of Controlled Release, 315, 1–22.

[31]. Needham, D., Anyarambhatla, G., Kong, G., & Dewhirst, M. W. (2000). A new temperature-sensitive liposome for use with mild hyperthermia: Characterization and testing in a human tumor xenograft model. Cancer Research, 60(5), 1197–1201.

[32]. Wang, X., & Allen, C. (2025). Synergistic effects of thermosensitive liposomal doxorubicin, mild hyperthermia, and radiotherapy in breast cancer management: An orthotopic mouse model study. Drug Delivery and Translational Research, 15(3), 1011–1022.

[33]. Amin, M., Lammers, T., & Ten Hagen, T. L. M. (2022). Temperature-sensitive polymers to promote heat-triggered drug release from liposomes: Towards bypassing EPR. Advanced Drug Delivery Reviews, 189, 114503.

[34]. Paredes, F., Williams, H. C., & San Martin, A. (2021). Metabolic adaptation in hypoxia and cancer. Cancer Letters, 502, 133–142.

[35]. Hu, F., Yue, H., Lu, T., & Ma, G. (2020). Cytosolic delivery of HBsAg and enhanced cellular immunity by pH-responsive liposome. Journal of Controlled Release, 324, 460–470.

[36]. De Oliveira Silva, J., Fernandes, R. S., De Alcântara Lemos, J., Cassali, G. D., De Paula Sabino, A., Townsend, D. M., Oliveira, M. C., & De Barros, A. L. B. (2023). Evaluation of acute toxicity and in vitro antitumor activity of a novel doxorubicin-loaded folate-coated pH-sensitive liposome. Biomedicine & Pharmacotherapy, 165, 115280.

[37]. Zhao, Y., Le, T. M. D., Hong, J., Jiao, A., Yoon, A.-R., & Yun, C.-O. (2024). Smart accumulating dual-targeting lipid envelopes equipping oncolytic adenovirus for enhancing cancer gene therapeutic efficacy. ACS Nano, 18(41), 27869–27890.

[38]. Zhao, T., Liang, C., Zhao, Y., Xue, X., Ma, Z., Qi, J., Shen, H., Yang, S., Zhang, J., Jia, Q., Du, Q., Cao, D., Xiang, B., Zhang, H., & Qi, X. (2022). Multistage pH-responsive codelivery liposomal platform for synergistic cancer therapy. Journal of Nanobiotechnology, 20(1), 177.

[39]. Shen, Y., Zhong, B., Zheng, W., Wang, D., Chen, L., Song, H., Pan, X., Mo, S., Jin, B., Cui, H., Zhan, H., Luo, F., & Liu, J. (2024). Rg3-lipo biomimetic delivery of paclitaxel enhances targeting of tumors and myeloid-derived suppressor cells. Journal of Clinical Investigation, 134(22), e178617.

[40]. Wu, M., Wang, Q., Chen, S., Zhou, Z., Li, J., Sun, H., Liu, J., Wang, G., Zhou, F., & Sun, M. (2022). Metabolic intervention liposome for targeting glutamine-addiction of breast cancer. Journal of Controlled Release, 350, 1–10.

[41]. George, T. A., Chen, M. M., Czosseck, A., Chen, H.-P., Huang, H.-S., & Lundy, D. J. (2022). Liposome-encapsulated anthraquinone improves efficacy and safety in triple negative breast cancer. Journal of Controlled Release, 342, 31–43.

[42]. Luo, K., Yang, L., Yan, C., Zhao, Y., Li, Q., Liu, X., Xie, L., Sun, Q., & Li, X. (2023). A dual‐targeting liposome enhances triple‐negative breast cancer chemoimmunotherapy through inducing immunogenic cell death and inhibiting STAT3 activation. Small, 19(40), 2302834.

[43]. Miao, Y., Chen, M., Zhou, X., Guo, L., Zhu, J., Wang, R., Zhang, X., & Gan, Y. (2021). Chitosan oligosaccharide modified liposomes enhance lung cancer delivery of paclitaxel. Acta Pharmacologica Sinica, 42(10), 1714–1722.

[44]. Xie, S., Zhu, J., Peng, Y., Zhan, F., Zhan, F., He, C., Feng, D., Xie, J., Liu, J., Zhu, H., Yao, H., Xu, J., Su, Z., & Xu, S. (2025). In vivo self‐assembly of PROTACs by bioorthogonal chemistry for precision cancer therapy. Angewandte Chemie International Edition, 64(11), e202421713.

[45]. Zhou, F., Li, X., Xue, X., Li, S., Fan, G., Cai, Y., Chang, Z., Qu, J., & Liu, R. (2023). A novel tri‐functional liposome Re‐educates “cold tumor” and abrogates tumor growth by synergizing autophagy inhibition and PD‐L1 blockade. Advanced Healthcare Materials, 12(11), 2202757.

[46]. Zhu, T., Chen, Z., Jiang, G., & Huang, X. (2023). Sequential targeting hybrid nanovesicles composed of chimeric antigen receptor T-cell-derived exosomes and liposomes for enhanced cancer immunochemotherapy. ACS Nano, 17(17), 16770–16786.

[47]. Liu, Y., Crowe, W. N., Wang, L., Petty, W. J., Habib, A. A., & Zhao, D. (2023). Aerosolized immunotherapeutic nanoparticle inhalation potentiates PD-L1 blockade for locally advanced lung cancer. Nano Research, 16(4), 5300–5310.

[48]. Sun, B., Li, R., Ji, N., Liu, H., Wang, H., Chen, C., Bai, L., Su, J., & Chen, J. (2025). Brain-targeting drug delivery systems: The state of the art in treatment of glioblastoma. Materials Today Bio, 30, 101443.

[49]. Liu, P., Lan, S., Gao, D., Hu, D., Chen, Z., Li, Z., Jiang, G., & Sheng, Z. (2024). Targeted blood-brain barrier penetration and precise imaging of infiltrative glioblastoma margins using hybrid cell membrane-coated ICG liposomes. Journal of Nanobiotechnology, 22(1), 603.

[50]. Chen, P., Liu, Y., Huang, H., Li, M., Xie, H., Roy, S., Gu, J., Jin, J., Deng, K., Du, L., & Guo, B. (2025). Genetically engineered IL12/CSF1R‐macrophage membrane‐liposome hybrid nanovesicles for NIR‐II fluorescence imaging‐guided and membrane‐targeted mild photothermal‐immunotherapy of glioblastoma. Advanced Science, 12(23), 2500131.

[51]. Meng, J.-L., Dong, Z.-X., Chen, Y.-R., Lin, M.-H., Liu, Y.-C., Roffler, S. R., Lin, W.-W., Chang, C.-Y., Tzou, S.-C., Cheng, T.-L., Huang, H.-C., Li, Z.-Q., Lin, Y.-C., & Su, Y.-C. (2025). pH-responsive polyethylene glycol engagers for enhanced brain delivery of PEGylated nanomedicine to treat glioblastoma. ACS Nano, 19(1), 307–321.

[52]. Sharifi, M., Cho, W. C., Ansariesfahani, A., Tarharoudi, R., Malekisarvar, H., Sari, S., Bloukh, S. H., Edis, Z., Amin, M., Gleghorn, J. P., Hagen, T. L. M. T., & Falahati, M. (2022). An updated review on EPR-based solid tumor targeting nanocarriers for cancer treatment. Cancers, 14(12), 2868.

Cite this article

Guo,Y. (2025). Research Advances in Liposomes for Antitumor Therapy. Theoretical and Natural Science,141,75-84.

Data availability

The datasets used and/or analyzed during the current study will be available from the authors upon reasonable request.

About volume

Volume title: Proceedings of ICBioMed 2025 Symposium: AI for Healthcare: Advanced Medical Data Analytics and Smart Rehabilitation

ISBN: 978-1-80590-395-6(Print) / 978-1-80590-396-3(Online)
Editor: Alan Wang
Conference date: 17 October 2025
Series: Theoretical and Natural Science
Volume number: Vol.141
ISSN: 2753-8818(Print) / 2753-8826(Online)