References
[1]. Meggiolaro M, Dubowsky S. Statistical analysis of positioning errors for robotic manipulators. IEEE Transactions on Robotics and Automation, 2003, 19(4): 601-613.
[2]. Wu P, Yang D. Statistical Tolerance Analysis for Serial Manipulators. Mechanism and Machine Theory, 2018, 126: 235-251.
[3]. Gouttefarde R, Lamaury J. Non-Gaussian Error Modeling for Cable-Driven Parallel Robots. IEEE Transactions on Robotics, 2022, 38(2): 1024-1038.
[4]. Schröer K, Albright S. Stochastic Modeling of Robotic Assembly Tasks for Error Prediction [J]. Journal of Manufacturing Systems, 2017, 44: 152-163.
[5]. Lee T, Park H. Bayesian Network for Robotic Error Diagnosis. IEEE Transactions on Industrial Informatics, 2019, 15(7): 4012-4021.
[6]. Lee T, Park H. Multi-source Error Fusion and State Estimation for Industrial Robots Based on Bayesian Network. International Journal of Precision Engineering and Manufacturing, 2020, 21(3): 543-554.
[7]. Li B, Tian W, Zhang C, et al. Positioning Error Compensation of an Industrial Robot Using Neural Networks and Experimental Study. Journal of Intelligent Manufacturing, 2022, 33(5): 1389-1405.
[8]. Wu L, Ren H, Li P. Data-Driven Statistical Framework for Calibration. IEEE Transactions on Industrial Electronics, 2021, 68(8): 7256-7265.
[9]. Chen Y, Yang W. Federated Learning for Multi-Robot Error Compensation. Robotics and Autonomous Systems, 2023, 162: 104389.
[10]. Meggiolaro M, Dubowsky S. Comparative Study of Monte Carlo Simulation for Nonlinear Error Propagation in Robotic Manipulators. ASME Journal of Mechanical Design, 2003, 125(3): 487-494.
[11]. Wu P, Yang D. Sensitivity Analysis of Manufacturing Tolerances in Serial Manipulators via Taylor Series Expansion. Precision Engineering, 2018, 54: 182-191.
[12]. Chen Y, Yang W. Bandwidth Requirements Analysis for Federated Learning-Based Multi-Robot Error Compensation. IEEE Internet of Things Journal, 2023, 10(12): 10689-10700.
[13]. Chen M, Zhang L. Generalization Ability Evaluation of Deep Learning Models for Collaborative Robot Error Compensation. Neural Computing and Applications, 2020, 32(18): 14567-14580.
[14]. Nakamura K, Ando S. Quantum-Inspired Sampling for High-Dimensional Error Spaces. Physical Review Applied, 2023, 19(5): 054023.
[15]. Levin M, Kriegman S. Biohybrid Error Correction Using Living Neural Networks. Science Robotics, 2023, 8(82): eabq4641.