References
[1]. L. Wu, B. Li, K. Guo, and Q. Zhang, "Capturing Global Structural Features and Temporal Dependencies in Dynamic Social Networks Using Graph Convolutional Networks, " Journal of Social Computing, vol. 6, no. 2, pp. 126-144, Jun. 2025. doi: 10.23919/JSC.2025.0008.
[2]. J. Lin, Y. Zhang, R. Wang, H. Chen, and M. Zhou, "Multi-Path Relationship Preserved Social Network Embedding, " IEEE Access, vol. 7, pp. 26507-26518, 2019. doi: 10.1109/ACCESS.2019.2900920.
[3]. G. Xue, M. Zhong, J. Li, J. Chen, C. Zhai, and R. Kong, "Dynamic Network Embedding Survey, " Neurocomputing, vol. 472, pp. 212-223, Jan. 2022. doi: 10.1016/j.neucom.2021.03.138.
[4]. S. Jeong, J. Park, and S. Lim, "mr2vec: Multiple Role-Based Social Network Embedding, " Pattern Recognition Letters, vol. 176, pp. 140-146, Dec. 2023. doi: 10.1016/j.patrec.2023.11.002.
[5]. Y. Peng et al., "DECTUIL: Cross-Social Network User Identity Linkage via Dynamic Embedding and Clustering Model Driven by Three-Way Decision, " Expert Systems with Applications, vol. 296, no. Part B, p. 129026, Jul. 2026. doi: 10.1016/j.eswa.2025.129026.
[6]. C. Ji, T. Zhao, Q. Sun, X. Fu, and J. Li, "Higher-Order Memory Guided Temporal Random Walk for Dynamic Heterogeneous Network Embedding, " Pattern Recognition, vol. 143, p. 109766, Nov. 2023. doi: 10.1016/j.patcog.2023.109766.
[7]. J. Tang, Y. Li, J. Qu, X. Li, and Y. Yao, "Probing for High Influential Nodes in Social Networks via a Co-Evolutionary Memetic Algorithm, " Physica A: Statistical Mechanics and its Applications, vol. 675, p. 130828, Sep. 2025. doi: 10.1016/j.physa.2025.130828.
[8]. H. Kaur, N. Hooda, and H. Singh, "K-Anonymization of Social Network Data Using Neural Network and SVM: K-NeuroSVM, " Journal of Information Security and Applications, vol. 72, p. 103382, Mar. 2023. doi: 10.1016/j.jisa.2022.103382.