Physical Mechanisms and Impacts of Different Noises in Gravitational Wave Detection
Research Article
Open Access
CC BY

Physical Mechanisms and Impacts of Different Noises in Gravitational Wave Detection

Zhenwei Wang 1*
1 Beijing RCF Experimental school
*Corresponding author: davidwangggg@163.com
Published on 2 October 2025
Journal Cover
TNS Vol.143
ISSN (Print): 2753-8826
ISSN (Online): 2753-8818
ISBN (Print): 978-1-80590-407-6
ISBN (Online): 978-1-80590-408-3
Download Cover

Abstract

Gravitational wave detection is modernly an important detection method of celestial phenomena like black hole merges or neutron star merges. Since the change in the arm length of the interferometer caused by gravitational waves is extremely small, the requirement of detection accuracy is significantly high. However, current detection accuracy is limited by multiple noises. Among them, the influences of quantum noise, thermal noise, and environmental noise are the most intense. Quantum, thermal, environmental noises limit high, medium, and low frequency range detecting accuracy respectively. This paper aims to explain the basic mechanisms of the noises through mathematical deduction. For each part, the paper also introduces common noise suppression strategies, include using compressed light and frequency-dependent compression (quantum noise), using low thermal influence suspension and coating materials (thermal noise), and setting multi-stage filtration system when solving seismic noise (environmental noise). With the strategies introduced, the paper also put forward ideas for future development.

Keywords:

Gravitational wave, noise mechanism, noise suppression measures

View PDF
Wang,Z. (2025). Physical Mechanisms and Impacts of Different Noises in Gravitational Wave Detection. Theoretical and Natural Science,143,42-49.

References

[1]. Abbott, B. P., et al. (2016). Observation of Gravitational Waves from a Binary Black Hole Merger. Physical Review Letters, 116(6), 061102.

[2]. Harry, G. M. (2010). Advanced LIGO: The Next Generation of Gravitational Wave Detectors. Classical and Quantum Gravity, 27(8), 084006.

[3]. Cavalleri, A., et al. (2020). Quantum Noise in Advanced Gravitational Wave Detectors. Physics Reports, 824, 1-45.

[4]. Schilling, R., et al. (2010). Thermal Noise in Gravitational Wave Detectors. Journal of Physics: Conference Series, 228, 012027.

[5]. Vallisneri, M. (2008). A Primer on Gravitational Waves. Physics Reports, 463(1), 5-87.

[6]. Maggiore, M. (2008). Gravitational Waves: Theory and Experiments. Oxford University Press.

[7]. Flanagan, É. É., & Hughes, S. A. (2005). “The basics of gravitational wave theory.” New Journal of Physics, 7(1), 204.

[8]. Caves, C. M. (1981). Quantum-mechanical noise in an interferometer. Physical Review D, 23(8), 1693–1708.

[9]. Caves, C. M. (1980). Quantum-mechanical radiation-pressure fluctuations in an interferometer. Physical Review Letters, 45(1), 75–79.

[10]. Aasi, J., Abbott, B. P., Abbott, R., et al. (2015). Advanced LIGO. Classical and Quantum Gravity, 32(7), 074001.

[11]. Braginsky, V. B., & Khalili, F. Ya. (1992). Quantum Measurement. Cambridge University Press.

[12]. Caves, C. M. (1980). Quantum-mechanical radiation-pressure fluctuations in an interferometer. Phys. Rev. Lett., 45, 75–79.

[13]. H. Grote, K. Danzmann, K. L. Dooley, et al. (2013). “First long-term application of squeezed vacuum states of light in a gravitational-wave observatory, ” Phys. Rev. Lett. 110, 181101

[14]. Callen, H. B., & Welton, T. A. (1951). Irreversibility and generalized noise. Phys. Rev., 83(1), 34–40.

[15]. Uchiyama, T., Tomaru, T., Yamamoto, A., et al. (2012). Mechanical loss of a cooled reflective coating for gravitational wave detection. Phys. Rev. Lett., 108(14), 141101.

[16]. Harry, G. M., Gretarsson, A. M., Saulson, P. R., et al. (2002). Thermal noise in interferometric gravitational wave detectors due to dielectric optical coatings. Class. Quantum Grav., 19(5), 897–917.

[17]. Saulson, P. R. (1984). Terrestrial gravitational noise on a gravitational wave antenna. Phys. Rev. D, 30(4), 732–736.

[18]. Hughes, S. A., & Thorne, K. S. (1998). Seismic gravity-gradient noise in interferometric gravitational-wave detectors. Phys. Rev. D, 58(12), 122002.

[19]. Harms, J. (2015). Terrestrial gravity fluctuations. Living Reviews in Relativity, 18(1), 3. https: //doi.org/10.1007/lrr-2015-3

Cite this article

Wang,Z. (2025). Physical Mechanisms and Impacts of Different Noises in Gravitational Wave Detection. Theoretical and Natural Science,143,42-49.

Data availability

The datasets used and/or analyzed during the current study will be available from the authors upon reasonable request.

About volume

Volume title: Proceedings of CONF-CIAP 2026 Symposium: International Conference on Atomic Magnetometer and Applications

ISBN: 978-1-80590-407-6(Print) / 978-1-80590-408-3(Online)
Editor: Marwan Omar , Jixi Lu , Mao Ye
Conference date: 30 January 2026
Series: Theoretical and Natural Science
Volume number: Vol.143
ISSN: 2753-8818(Print) / 2753-8826(Online)