References
[1]. Varadarajan, S.G., Hunyara, J.L., Hamilton, N.R., Kolodkin, A.L., and Huberman, A.D. (2022). Central nervous system regeneration. Cell 185, 77-94. 10.1016/j.cell.2021.10.029.
[2]. Rust, R., Yin, H., Achón Buil, B., Sagare, A.P., and Kisler, K. (2025). The blood-brain barrier: a help and a hindrance. Brain 148, 2262-2282. 10.1093/brain/awaf068.
[3]. Chen, H., Li, N., Cai, Y., Ma, C., Ye, Y., Shi, X., Guo, J., Han, Z., Liu, Y., and Wei, X. (2026). Exosomes in neurodegenerative diseases: Therapeutic potential and modification methods. Neural Regen Res 21, 478-490. 10.4103/nrr.Nrr-d-24-00720.
[4]. Xiao, T., Zhang, W., Jiao, B., Pan, C.Z., Liu, X., and Shen, L. (2017). The role of exosomes in the pathogenesis of Alzheimer' disease. Transl Neurodegener 6, 3. 10.1186/s40035-017-0072-x.
[5]. Welsh, J.A., Goberdhan, D.C.I., O'Driscoll, L., Buzas, E.I., Blenkiron, C., Bussolati, B., Cai, H., Di Vizio, D., Driedonks, T.A.P., Erdbrügger, U., et al. (2024). Minimal information for studies of extracellular vesicles (MISEV2023): From basic to advanced approaches. J Extracell Vesicles 13, e12404. 10.1002/jev2.12404.
[6]. Wolf, P. (1967). The nature and significance of platelet products in human plasma. Br J Haematol 13, 269-288. 10.1111/j.1365-2141.1967.tb08741.x.
[7]. Crawford, N. (1971). The presence of contractile proteins in platelet microparticles isolated from human and animal platelet-free plasma. Br J Haematol 21, 53-69. 10.1111/j.1365-2141.1971.tb03416.x.
[8]. Harding, C., Heuser, J., and Stahl, P. (1983). Receptor-mediated endocytosis of transferrin and recycling of the transferrin receptor in rat reticulocytes. J Cell Biol 97, 329-339. 10.1083/jcb.97.2.329.
[9]. Pan, B.T., and Johnstone, R.M. (1983). Fate of the transferrin receptor during maturation of sheep reticulocytes in vitro: selective externalization of the receptor. Cell 33, 967-978. 10.1016/0092-8674(83)90040-5.
[10]. Johnstone, R.M., Adam, M., Hammond, J.R., Orr, L., and Turbide, C. (1987). Vesicle formation during reticulocyte maturation. Association of plasma membrane activities with released vesicles (exosomes). J Biol Chem 262, 9412-9420.
[11]. Vidal, M.J., and Stahl, P.D. (1993). The small GTP-binding proteins Rab4 and ARF are associated with released exosomes during reticulocyte maturation. Eur J Cell Biol 60, 261-267.
[12]. Escola, J.M., Kleijmeer, M.J., Stoorvogel, W., Griffith, J.M., Yoshie, O., and Geuze, H.J. (1998). Selective enrichment of tetraspan proteins on the internal vesicles of multivesicular endosomes and on exosomes secreted by human B-lymphocytes. J Biol Chem 273, 20121-20127. 10.1074/jbc.273.32.20121.
[13]. Lee, Y.J., Jy, W., Horstman, L.L., Janania, J., Reyes, Y., Kelley, R.E., and Ahn, Y.S. (1993). Elevated platelet microparticles in transient ischemic attacks, lacunar infarcts, and multiinfarct dementias. Thromb Res 72, 295-304. 10.1016/0049-3848(93)90138-e.
[14]. Singh, N., Gemmell, C.H., Daly, P.A., and Yeo, E.L. (1995). Elevated platelet-derived microparticle levels during unstable angina. Can J Cardiol 11, 1015-1021.
[15]. Couch, Y., Buzàs, E.I., Di Vizio, D., Gho, Y.S., Harrison, P., Hill, A.F., Lötvall, J., Raposo, G., Stahl, P.D., Théry, C., et al. (2021). A brief history of nearly EV-erything - The rise and rise of extracellular vesicles. J Extracell Vesicles 10, e12144. 10.1002/jev2.12144.
[16]. Wang, W., Qiao, S., Kong, X., Zhang, G., and Cai, Z. (2025). The role of exosomes in immunopathology and potential therapeutic implications. Cell Mol Immunol. 10.1038/s41423-025-01323-5.
[17]. Homma, Y., Hiragi, S., and Fukuda, M. (2021). Rab family of small GTPases: an updated view on their regulation and functions. Febs j 288, 36-55. 10.1111/febs.15453.
[18]. Henne, W.M., Buchkovich, N.J., and Emr, S.D. (2011). The ESCRT pathway. Dev Cell 21, 77-91. 10.1016/j.devcel.2011.05.015.
[19]. Tang, S., Buchkovich, N.J., Henne, W.M., Banjade, S., Kim, Y.J., and Emr, S.D. (2016). ESCRT-III activation by parallel action of ESCRT-I/II and ESCRT-0/Bro1 during MVB biogenesis. Elife 5. 10.7554/eLife.15507.
[20]. Wenzel, E.M., Schultz, S.W., Schink, K.O., Pedersen, N.M., Nähse, V., Carlson, A., Brech, A., Stenmark, H., and Raiborg, C. (2018). Concerted ESCRT and clathrin recruitment waves define the timing and morphology of intraluminal vesicle formation. Nat Commun 9, 2932. 10.1038/s41467-018-05345-8.
[21]. Arya, S.B., Collie, S.P., and Parent, C.A. (2024). The ins-and-outs of exosome biogenesis, secretion, and internalization. Trends Cell Biol 34, 90-108. 10.1016/j.tcb.2023.06.006.
[22]. Crivelli, S.M., Giovagnoni, C., Zhu, Z., Tripathi, P., Elsherbini, A., Quadri, Z., Pu, J., Zhang, L., Ferko, B., Berkes, D., et al. (2022). Function of ceramide transfer protein for biogenesis and sphingolipid composition of extracellular vesicles. J Extracell Vesicles 11, e12233. 10.1002/jev2.12233.
[23]. Wei, D., Zhan, W., Gao, Y., Huang, L., Gong, R., Wang, W., Zhang, R., Wu, Y., Gao, S., and Kang, T. (2021a). RAB31 marks and controls an ESCRT-independent exosome pathway. Cell Res 31, 157-177. 10.1038/s41422-020-00409-1.
[24]. Rabas, N., Palmer, S., Mitchell, L., Ismail, S., Gohlke, A., Riley, J.S., Tait, S.W.G., Gammage, P., Soares, L.L., Macpherson, I.R., and Norman, J.C. (2021). PINK1 drives production of mtDNA-containing extracellular vesicles to promote invasiveness. J Cell Biol 220. 10.1083/jcb.202006049.
[25]. Todkar, K., Chikhi, L., Desjardins, V., El-Mortada, F., Pépin, G., and Germain, M. (2021). Selective packaging of mitochondrial proteins into extracellular vesicles prevents the release of mitochondrial DAMPs. Nat Commun 12, 1971. 10.1038/s41467-021-21984-w.
[26]. Arya, S.B., Chen, S., Jordan-Javed, F., and Parent, C.A. (2022). Ceramide-rich microdomains facilitate nuclear envelope budding for non-conventional exosome formation. Nat Cell Biol 24, 1019-1028. 10.1038/s41556-022-00934-8.
[27]. Majumdar, R., Tavakoli Tameh, A., Arya, S.B., and Parent, C.A. (2021). Exosomes mediate LTB4 release during neutrophil chemotaxis. PLoS Biol 19, e3001271. 10.1371/journal.pbio.3001271.
[28]. Fan, S.J., Kroeger, B., Marie, P.P., Bridges, E.M., Mason, J.D., McCormick, K., Zois, C.E., Sheldon, H., Khalid Alham, N., Johnson, E., et al. (2020). Glutamine deprivation alters the origin and function of cancer cell exosomes. Embo j 39, e103009. 10.15252/embj.2019103009.
[29]. Park, S.J., Kim, J.M., Kim, J., Hur, J., Park, S., Kim, K., Shin, H.J., and Chwae, Y.J. (2018). Molecular mechanisms of biogenesis of apoptotic exosome-like vesicles and their roles as damage-associated molecular patterns. Proc Natl Acad Sci U S A 115, E11721-e11730. 10.1073/pnas.1811432115.
[30]. Wei, H., Chen, Q., Lin, L., Sha, C., Li, T., Liu, Y., Yin, X., Xu, Y., Chen, L., Gao, W., et al. (2021b). Regulation of exosome production and cargo sorting. Int J Biol Sci 17, 163-177. 10.7150/ijbs.53671.
[31]. Tenchov, R., Sasso, J.M., Wang, X., Liaw, W.S., Chen, C.A., and Zhou, Q.A. (2022). Exosomes─Nature's Lipid Nanoparticles, a Rising Star in Drug Delivery and Diagnostics. ACS Nano 16, 17802-17846. 10.1021/acsnano.2c08774.
[32]. Pfrieger, F.W., and Vitale, N. (2018). Cholesterol and the journey of extracellular vesicles. J Lipid Res 59, 2255-2261. 10.1194/jlr.R084210.
[33]. Wang, X., Huang, J., Chen, W., Li, G., Li, Z., and Lei, J. (2022). The updated role of exosomal proteins in the diagnosis, prognosis, and treatment of cancer. Exp Mol Med 54, 1390-1400. 10.1038/s12276-022-00855-4.
[34]. Liu, X.M., Ma, L., and Schekman, R. (2021). Selective sorting of microRNAs into exosomes by phase-separated YBX1 condensates. Elife 10. 10.7554/eLife.71982.
[35]. Hosseini, K., Ranjbar, M., Pirpour Tazehkand, A., Asgharian, P., Montazersaheb, S., Tarhriz, V., and Ghasemnejad, T. (2022). Evaluation of exosomal non-coding RNAs in cancer using high-throughput sequencing. J Transl Med 20, 30. 10.1186/s12967-022-03231-y.
[36]. Dellar, E.R., Hill, C., Melling, G.E., Carter, D.R.F., and Baena-Lopez, L.A. (2022). Unpacking extracellular vesicles: RNA cargo loading and function. J Extracell Biol 1, e40. 10.1002/jex2.40.
[37]. Zhou, R., Chen, K.K., Zhang, J., Xiao, B., Huang, Z., Ju, C., Sun, J., Zhang, F., Lv, X.B., and Huang, G. (2018). The decade of exosomal long RNA species: an emerging cancer antagonist. Mol Cancer 17, 75. 10.1186/s12943-018-0823-z.
[38]. Li, C., Ni, Y.Q., Xu, H., Xiang, Q.Y., Zhao, Y., Zhan, J.K., He, J.Y., Li, S., and Liu, Y.S. (2021a). Roles and mechanisms of exosomal non-coding RNAs in human health and diseases. Signal Transduct Target Ther 6, 383. 10.1038/s41392-021-00779-x.
[39]. Ferreira, J.V., da Rosa Soares, A., Ramalho, J., Máximo Carvalho, C., Cardoso, M.H., Pintado, P., Carvalho, A.S., Beck, H.C., Matthiesen, R., Zuzarte, M., et al. (2022). LAMP2A regulates the loading of proteins into exosomes. Sci Adv 8, eabm1140. 10.1126/sciadv.abm1140.
[40]. Abdelsalam, M., Ahmed, M., Osaid, Z., Hamoudi, R., and Harati, R. (2023). Insights into Exosome Transport through the Blood-Brain Barrier and the Potential Therapeutical Applications in Brain Diseases. Pharmaceuticals (Basel) 16. 10.3390/ph16040571.
[41]. Zixuan, H., Xuan, Z., Wenjing, W., Ruolin, S., and Gaofeng, L. (2025). Exosome miRNA sorting controlled by RNA-binding protein-motif interactions. Extracellular Vesicles and Circulating Nucleic Acids 6, 470-498.
[42]. Villarroya-Beltri, C., Gutiérrez-Vázquez, C., Sánchez-Cabo, F., Pérez-Hernández, D., Vázquez, J., Martin-Cofreces, N., Martinez-Herrera, D.J., Pascual-Montano, A., Mittelbrunn, M., and Sánchez-Madrid, F. (2013). Sumoylated hnRNPA2B1 controls the sorting of miRNAs into exosomes through binding to specific motifs. Nat Commun 4, 2980. 10.1038/ncomms3980.
[43]. Oka, Y., Tanaka, K., and Kawasaki, Y. (2023). A novel sorting signal for RNA packaging into small extracellular vesicles. Sci Rep 13, 17436. 10.1038/s41598-023-44218-z.
[44]. Lee, Y.J., Shin, K.J., and Chae, Y.C. (2024). Regulation of cargo selection in exosome biogenesis and its biomedical applications in cancer. Exp Mol Med 56, 877-889. 10.1038/s12276-024-01209-y.
[45]. Wu, D., Chen, Q., Chen, X., Han, F., Chen, Z., and Wang, Y. (2023). The blood-brain barrier: structure, regulation, and drug delivery. Signal Transduct Target Ther 8, 217. 10.1038/s41392-023-01481-w.
[46]. Mehdizadeh, S., Mamaghani, M., Hassanikia, S., Pilehvar, Y., and Ertas, Y.N. (2025). Exosome-powered neuropharmaceutics: unlocking the blood-brain barrier for next-gen therapies. J Nanobiotechnology 23, 329. 10.1186/s12951-025-03352-8.
[47]. Fromm, M.F. (2000). P-glycoprotein: a defense mechanism limiting oral bioavailability and CNS accumulation of drugs. Int J Clin Pharmacol Ther 38, 69-74. 10.5414/cpp38069.
[48]. Saint-Pol, J., Gosselet, F., Duban-Deweer, S., Pottiez, G., and Karamanos, Y. (2020). Targeting and Crossing the Blood-Brain Barrier with Extracellular Vesicles. Cells 9. 10.3390/cells9040851.
[49]. Villaseñor, R., Lampe, J., Schwaninger, M., and Collin, L. (2019). Intracellular transport and regulation of transcytosis across the blood-brain barrier. Cell Mol Life Sci 76, 1081-1092. 10.1007/s00018-018-2982-x.
[50]. Krämer-Albers, E.M. (2022). Extracellular Vesicles at CNS barriers: Mode of action. Curr Opin Neurobiol 75, 102569. 10.1016/j.conb.2022.102569.
[51]. Lerussi, G., Villagrasa-Araya, V., Moltó-Abad, M., Del Toro, M., Pintos-Morell, G., Seras-Franzoso, J., and Abasolo, I. (2025). Extracellular Vesicles as Tools for Crossing the Blood-Brain Barrier to Treat Lysosomal Storage Diseases. Life (Basel) 15. 10.3390/life15010070.
[52]. Graykowski, D.R., Wang, Y.Z., Upadhyay, A., and Savas, J.N. (2020). The Dichotomous Role of Extracellular Vesicles in the Central Nervous System. iScience 23, 101456. 10.1016/j.isci.2020.101456.
[53]. Vargas, J.Y., Grudina, C., and Zurzolo, C. (2019). The prion-like spreading of α-synuclein: From in vitro to in vivo models of Parkinson's disease. Ageing Res Rev 50, 89-101. 10.1016/j.arr.2019.01.012.
[54]. Gustafsson, G., Lööv, C., Persson, E., Lázaro, D.F., Takeda, S., Bergström, J., Erlandsson, A., Sehlin, D., Balaj, L., György, B., et al. (2018). Secretion and Uptake of α-Synuclein Via Extracellular Vesicles in Cultured Cells. Cell Mol Neurobiol 38, 1539-1550. 10.1007/s10571-018-0622-5.
[55]. Ingelsson, M. (2016). Alpha-Synuclein Oligomers-Neurotoxic Molecules in Parkinson's Disease and Other Lewy Body Disorders. Front Neurosci 10, 408. 10.3389/fnins.2016.00408.
[56]. Guo, M., Wang, J., Zhao, Y., Feng, Y., Han, S., Dong, Q., Cui, M., and Tieu, K. (2020). Microglial exosomes facilitate α-synuclein transmission in Parkinson's disease. Brain 143, 1476-1497. 10.1093/brain/awaa090.
[57]. Dinkins, M.B., Dasgupta, S., Wang, G., Zhu, G., and Bieberich, E. (2014). Exosome reduction in vivo is associated with lower amyloid plaque load in the 5XFAD mouse model of Alzheimer's disease. Neurobiol Aging 35, 1792-1800. 10.1016/j.neurobiolaging.2014.02.012.
[58]. Jia, L., Quan, M., Fu, Y., Zhao, T., Li, Y., Wei, C., Tang, Y., Qin, Q., Wang, F., Qiao, Y., et al. (2020). Dementia in China: epidemiology, clinical management, and research advances. Lancet Neurol 19, 81-92. 10.1016/s1474-4422(19)30290-x.
[59]. Twarowski, B., and Herbet, M. (2023). Inflammatory Processes in Alzheimer's Disease-Pathomechanism, Diagnosis and Treatment: A Review. Int J Mol Sci 24. 10.3390/ijms24076518.
[60]. Muralidar, S., Ambi, S.V., Sekaran, S., Thirumalai, D., and Palaniappan, B. (2020). Role of tau protein in Alzheimer's disease: The prime pathological player. Int J Biol Macromol 163, 1599-1617. 10.1016/j.ijbiomac.2020.07.327.
[61]. Viola, K.L., and Klein, W.L. (2015). Amyloid β oligomers in Alzheimer's disease pathogenesis, treatment, and diagnosis. Acta Neuropathol 129, 183-206. 10.1007/s00401-015-1386-3.
[62]. Chauhan, S., Behl, T., Sehgal, A., Singh, S., Sharma, N., Gupta, S., Albratty, M., Najmi, A., Meraya, A.M., and Alhazmi, H.A. (2022). Understanding the Intricate Role of Exosomes in Pathogenesis of Alzheimer's Disease. Neurotox Res 40, 1758-1773. 10.1007/s12640-022-00621-4.
[63]. Bengoa-Vergniory, N., Velentza-Almpani, E., Silva, A.M., Scott, C., Vargas-Caballero, M., Sastre, M., Wade-Martins, R., and Alegre-Abarrategui, J. (2021). Tau-proximity ligation assay reveals extensive previously undetected pathology prior to neurofibrillary tangles in preclinical Alzheimer's disease. Acta Neuropathol Commun 9, 18. 10.1186/s40478-020-01117-y.
[64]. Sardar Sinha, M., Ansell-Schultz, A., Civitelli, L., Hildesjö, C., Larsson, M., Lannfelt, L., Ingelsson, M., and Hallbeck, M. (2018). Alzheimer's disease pathology propagation by exosomes containing toxic amyloid-beta oligomers. Acta Neuropathol 136, 41-56. 10.1007/s00401-018-1868-1.
[65]. Sarkar, S., Jun, S., Rellick, S., Quintana, D.D., Cavendish, J.Z., and Simpkins, J.W. (2016). Expression of microRNA-34a in Alzheimer's disease brain targets genes linked to synaptic plasticity, energy metabolism, and resting state network activity. Brain Res 1646, 139-151. 10.1016/j.brainres.2016.05.026.
[66]. Liu, C.G., Song, J., Zhang, Y.Q., and Wang, P.C. (2014). MicroRNA-193b is a regulator of amyloid precursor protein in the blood and cerebrospinal fluid derived exosomal microRNA-193b is a biomarker of Alzheimer's disease. Mol Med Rep 10, 2395-2400. 10.3892/mmr.2014.2484.
[67]. Shen, Y., Shen, Z., Guo, L., Zhang, Q., Wang, Z., Miao, L., Wang, M., Wu, J., Guo, W., and Zhu, Y. (2018). MiR-125b-5p is involved in oxygen and glucose deprivation injury in PC-12 cells via CBS/H(2)S pathway. Nitric Oxide 78, 11-21. 10.1016/j.niox.2018.05.004.
[68]. Yuyama, K., Sun, H., Mitsutake, S., and Igarashi, Y. (2012). Sphingolipid-modulated exosome secretion promotes clearance of amyloid-β by microglia. J Biol Chem 287, 10977-10989. 10.1074/jbc.M111.324616.
[69]. Li, T.R., Wang, X.N., Sheng, C., Li, Y.X., Li, F.Z., Sun, Y., and Han, Y. (2019). Extracellular vesicles as an emerging tool for the early detection of Alzheimer's disease. Mech Ageing Dev 184, 111175. 10.1016/j.mad.2019.111175.
[70]. Winston, C.N., Goetzl, E.J., Akers, J.C., Carter, B.S., Rockenstein, E.M., Galasko, D., Masliah, E., and Rissman, R.A. (2016). Prediction of conversion from mild cognitive impairment to dementia with neuronally derived blood exosome protein profile. Alzheimers Dement (Amst) 3, 63-72. 10.1016/j.dadm.2016.04.001.
[71]. Lugli, G., Cohen, A.M., Bennett, D.A., Shah, R.C., Fields, C.J., Hernandez, A.G., and Smalheiser, N.R. (2015). Plasma Exosomal miRNAs in Persons with and without Alzheimer Disease: Altered Expression and Prospects for Biomarkers. PLoS One 10, e0139233. 10.1371/journal.pone.0139233.
[72]. Jiang, C., Hopfner, F., Katsikoudi, A., Hein, R., Catli, C., Evetts, S., Huang, Y., Wang, H., Ryder, J.W., Kuhlenbaeumer, G., et al. (2020). Serum neuronal exosomes predict and differentiate Parkinson's disease from atypical parkinsonism. J Neurol Neurosurg Psychiatry 91, 720-729. 10.1136/jnnp-2019-322588.
[73]. Chen, Z.T., Pan, C.Z., Ruan, X.L., Lei, L.P., Lin, S.M., Wang, Y.Z., and Zhao, Z.H. (2023). Evaluation of ferritin and TfR level in plasma neural-derived exosomes as potential markers of Parkinson's disease. Front Aging Neurosci 15, 1216905. 10.3389/fnagi.2023.1216905.
[74]. He, S., Huang, L., Shao, C., Nie, T., Xia, L., Cui, B., Lu, F., Zhu, L., Chen, B., and Yang, Q. (2021). Several miRNAs derived from serum extracellular vesicles are potential biomarkers for early diagnosis and progression of Parkinson's disease. Transl Neurodegener 10, 25. 10.1186/s40035-021-00249-y.
[75]. Jiang, L., Dong, H., Cao, H., Ji, X., Luan, S., and Liu, J. (2019). Exosomes in Pathogenesis, Diagnosis, and Treatment of Alzheimer's Disease. Med Sci Monit 25, 3329-3335. 10.12659/msm.914027.
[76]. Kang, I.S., Suh, J., Lee, M.N., Lee, C., Jin, J., Lee, C., Yang, Y.I., Jang, Y., and Oh, G.T. (2020). Characterization of human cardiac mesenchymal stromal cells and their extracellular vesicles comparing with human bone marrow derived mesenchymal stem cells. BMB Rep 53, 118-123. 10.5483/BMBRep.2020.53.2.235.
[77]. Tang, Y., Zhou, Y., and Li, H.J. (2021). Advances in mesenchymal stem cell exosomes: a review. Stem Cell Res Ther 12, 71. 10.1186/s13287-021-02138-7.
[78]. Elia, C.A., Tamborini, M., Rasile, M., Desiato, G., Marchetti, S., Swuec, P., Mazzitelli, S., Clemente, F., Anselmo, A., Matteoli, M., et al. (2019). Intracerebral Injection of Extracellular Vesicles from Mesenchymal Stem Cells Exerts Reduced Aβ Plaque Burden in Early Stages of a Preclinical Model of Alzheimer's Disease. Cells 8. 10.3390/cells8091059.
[79]. Ma, L., Wei, X., Ma, W., Liu, Y., Wang, Y., He, Y., Jia, S., Wang, Y., Luo, W., and Liu, D. (2022). Neural stem cell-derived exosomal netrin1 contributes to neuron differentiation of mesenchymal stem cells in therapy of spinal bifida aperta. Stem Cells Translational Medicine 11, 539-551.
[80]. Upadhya, R., Madhu, L.N., Rao, S., and Shetty, A.K. (2022). Proficiency of extracellular vesicles from hiPSC-derived neural stem cells in modulating proinflammatory human microglia: role of pentraxin-3 and miRNA-21-5p. Frontiers in Molecular Neuroscience 15, 845542.
[81]. Stevanato, L., Thanabalasundaram, L., Vysokov, N., and Sinden, J.D. (2016). Investigation of Content, Stoichiometry and Transfer of miRNA from Human Neural Stem Cell Line Derived Exosomes. PLoS One 11, e0146353. 10.1371/journal.pone.0146353.
[82]. Li, Y., and Fang, B. (2023). Neural stem cell-derived extracellular vesicles: The light of central nervous system diseases. Biomed Pharmacother 165, 115092. 10.1016/j.biopha.2023.115092.
[83]. Yu, B., Ikhlas, S., Ruan, C., Zhong, X., and Cai, D. (2020). Innate and Adaptive Immunity of Murine Neural Stem Cell-Derived piRNA Exosomes/Microvesicles against Pseudotyped SARS-CoV-2 and HIV-Based Lentivirus. iScience 23, 101806. 10.1016/j.isci.2020.101806.
[84]. Ikhlas, S., Usman, A., Kim, D., and Cai, D. (2022). Exosomes/microvesicles target SARS-CoV-2 via innate and RNA-induced immunity with PIWI-piRNA system. Life Sci Alliance 5. 10.26508/lsa.202101240.
[85]. Wang, S., Cesca, F., Loers, G., Schweizer, M., Buck, F., Benfenati, F., Schachner, M., and Kleene, R. (2011). Synapsin I is an oligomannose-carrying glycoprotein, acts as an oligomannose-binding lectin, and promotes neurite outgrowth and neuronal survival when released via glia-derived exosomes. J Neurosci 31, 7275-7290. 10.1523/jneurosci.6476-10.2011.
[86]. An, Q., van Bel, A.J., and Hückelhoven, R. (2007). Do plant cells secrete exosomes derived from multivesicular bodies? Plant signaling & behavior 2, 4-7.
[87]. Zhang, Y., Lu, L., Li, Y., Liu, H., Zhou, W., and Zhang, L. (2024). Response Surface Methodology Optimization of Exosome-like Nanovesicles Extraction from Lycium ruthenicum Murray and Their Inhibitory Effects on Aβ-Induced Apoptosis and Oxidative Stress in HT22 Cells. Foods 13, 3328.
[88]. Zhang, Y., Zhang, X., Zhou, J., Li, Y., Kai, T., and Zhang, L. (2025). Lycium ruthenicum Murray exosome-like nanovesicles alleviated Alzheimer's disease–like symptoms induced by Aβ protein in transgenic Caenorhabditis elegans through the DAF-16 pathway. International Journal of Biological Macromolecules 304, 140758.
[89]. Han, R., Zhou, D., Ji, N., Yin, Z., Wang, J., Zhang, Q., Zhang, H., Liu, J., Liu, X., Liu, H., et al. (2025). Folic acid-modified ginger-derived extracellular vesicles for targeted treatment of rheumatoid arthritis by remodeling immune microenvironment via the PI3K-AKT pathway. J Nanobiotechnology 23, 41. 10.1186/s12951-025-03096-5.
[90]. Xu, Y., Yan, G., Zhao, J., Ren, Y., Xiao, Q., Tan, M., and Peng, L. (2024). Plant-derived exosomes as cell homogeneous nanoplatforms for brain biomacromolecules delivery ameliorate mitochondrial dysfunction against Parkinson’s disease. Nano Today 58, 102438.
[91]. Yu, Y., Xu, Z., Xu, L., Lu, D., Tang, Y., and Mai, H. (2025). Plant extracellular vesicles as emerging neuroprotective agents for central nervous system disorders. J Adv Res. 10.1016/j.jare.2025.03.042.
[92]. Han, Y., Jones, T.W., Dutta, S., Zhu, Y., Wang, X., Narayanan, S.P., Fagan, S.C., and Zhang, D. (2021). Overview and Update on Methods for Cargo Loading into Extracellular Vesicles. Processes (Basel) 9. 10.3390/pr9020356.
[93]. Sheykhhasan, M., Amini, R., Soleimani Asl, S., Saidijam, M., Hashemi, S.M., and Najafi, R. (2022). Neuroprotective effects of coenzyme Q10-loaded exosomes obtained from adipose-derived stem cells in a rat model of Alzheimer's disease. Biomed Pharmacother 152, 113224. 10.1016/j.biopha.2022.113224.
[94]. Monfared, H., Jahangard, Y., Nikkhah, M., Mirnajafi-Zadeh, J., and Mowla, S.J. (2019). Potential Therapeutic Effects of Exosomes Packed With a miR-21-Sponge Construct in a Rat Model of Glioblastoma. Front Oncol 9, 782. 10.3389/fonc.2019.00782.
[95]. Kanada, M., Bachmann, M.H., Hardy, J.W., Frimannson, D.O., Bronsart, L., Wang, A., Sylvester, M.D., Schmidt, T.L., Kaspar, R.L., Butte, M.J., et al. (2015). Differential fates of biomolecules delivered to target cells via extracellular vesicles. Proc Natl Acad Sci U S A 112, E1433-1442. 10.1073/pnas.1418401112.
[96]. Tran, F., and Boedicker, J.Q. (2019). Plasmid Characteristics Modulate the Propensity of Gene Exchange in Bacterial Vesicles. J Bacteriol 201. 10.1128/jb.00430-18.
[97]. Sadeghi, S., Tehrani, F.R., Tahmasebi, S., Shafiee, A., and Hashemi, S.M. (2023). Exosome engineering in cell therapy and drug delivery. Inflammopharmacology 31, 145-169. 10.1007/s10787-022-01115-7.
[98]. White, M.K., Kaminski, R., Young, W.B., Roehm, P.C., and Khalili, K. (2017). CRISPR Editing Technology in Biological and Biomedical Investigation. J Cell Biochem 118, 3586-3594. 10.1002/jcb.26099.
[99]. Bai, J., Duan, J., Liu, R., Du, Y., Luo, Q., Cui, Y., Su, Z., Xu, J., Xie, Y., and Lu, W. (2020). Engineered targeting tLyp-1 exosomes as gene therapy vectors for efficient delivery of siRNA into lung cancer cells. Asian J Pharm Sci 15, 461-471. 10.1016/j.ajps.2019.04.002.
[100]. Curley, N., Levy, D., Do, M.A., Brown, A., Stickney, Z., Marriott, G., and Lu, B. (2020). Sequential deletion of CD63 identifies topologically distinct scaffolds for surface engineering of exosomes in living human cells. Nanoscale 12, 12014-12026. 10.1039/d0nr00362j.
[101]. Liang, Y., Duan, L., Lu, J., and Xia, J. (2021). Engineering exosomes for targeted drug delivery. Theranostics 11, 3183-3195. 10.7150/thno.52570.
[102]. Chen, H., Wang, L., Zeng, X., Schwarz, H., Nanda, H.S., Peng, X., and Zhou, Y. (2021). Exosomes, a New Star for Targeted Delivery. Front Cell Dev Biol 9, 751079. 10.3389/fcell.2021.751079.
[103]. Akbari, A., Nazari-Khanamiri, F., Ahmadi, M., Shoaran, M., and Rezaie, J. (2022). Engineered Exosomes for Tumor-Targeted Drug Delivery: A Focus on Genetic and Chemical Functionalization. Pharmaceutics 15. 10.3390/pharmaceutics15010066.
[104]. Jia, G., Han, Y., An, Y., Ding, Y., He, C., Wang, X., and Tang, Q. (2018). NRP-1 targeted and cargo-loaded exosomes facilitate simultaneous imaging and therapy of glioma in vitro and in vivo. Biomaterials 178, 302-316. 10.1016/j.biomaterials.2018.06.029.
[105]. Abri Aghdam, M., Bagheri, R., Mosafer, J., Baradaran, B., Hashemzaei, M., Baghbanzadeh, A., de la Guardia, M., and Mokhtarzadeh, A. (2019). Recent advances on thermosensitive and pH-sensitive liposomes employed in controlled release. J Control Release 315, 1-22. 10.1016/j.jconrel.2019.09.018.
[106]. Lin, Y., Wu, J., Gu, W., Huang, Y., Tong, Z., Huang, L., and Tan, J. (2018). Exosome-Liposome Hybrid Nanoparticles Deliver CRISPR/Cas9 System in MSCs. Adv Sci (Weinh) 5, 1700611. 10.1002/advs.201700611.
[107]. Rayamajhi, S., Nguyen, T.D.T., Marasini, R., and Aryal, S. (2019). Macrophage-derived exosome-mimetic hybrid vesicles for tumor targeted drug delivery. Acta Biomater 94, 482-494. 10.1016/j.actbio.2019.05.054.
[108]. Jhan, Y.Y., Prasca-Chamorro, D., Palou Zuniga, G., Moore, D.M., Arun Kumar, S., Gaharwar, A.K., and Bishop, C.J. (2020). Engineered extracellular vesicles with synthetic lipids via membrane fusion to establish efficient gene delivery. Int J Pharm 573, 118802. 10.1016/j.ijpharm.2019.118802.
[109]. Li, Y.J., Wu, J.Y., Liu, J., Xu, W., Qiu, X., Huang, S., Hu, X.B., and Xiang, D.X. (2021b). Artificial exosomes for translational nanomedicine. J Nanobiotechnology 19, 242. 10.1186/s12951-021-00986-2.
[110]. El-Andaloussi, S., Lee, Y., Lakhal-Littleton, S., Li, J., Seow, Y., Gardiner, C., Alvarez-Erviti, L., Sargent, I.L., and Wood, M.J. (2012). Exosome-mediated delivery of siRNA in vitro and in vivo. Nat Protoc 7, 2112-2126. 10.1038/nprot.2012.131.
[111]. René, C.A., and Parks, R.J. (2021). Delivery of Therapeutic Agents to the Central Nervous System and the Promise of Extracellular Vesicles. Pharmaceutics 13. 10.3390/pharmaceutics13040492.
[112]. Chen, L., Wu, J., Luo, P., & Fu, A. (2017). Research progress on polypeptide fragments of rabies virus glycoprotein as brain-targeted drug carriers. Chinese Pharmacological Bulletin, 33(5).
[113]. Heidarzadeh, M., Gürsoy-Özdemir, Y., Kaya, M., Eslami Abriz, A., Zarebkohan, A., Rahbarghazi, R., and Sokullu, E. (2021). Exosomal delivery of therapeutic modulators through the blood-brain barrier; promise and pitfalls. Cell Biosci 11, 142. 10.1186/s13578-021-00650-0.
[114]. Cui, G.H., Guo, H.D., Li, H., Zhai, Y., Gong, Z.B., Wu, J., Liu, J.S., Dong, Y.R., Hou, S.X., and Liu, J.R. (2019). RVG-modified exosomes derived from mesenchymal stem cells rescue memory deficits by regulating inflammatory responses in a mouse model of Alzheimer's disease. Immun Ageing 16, 10. 10.1186/s12979-019-0150-2.
[115]. Parada, N., Romero-Trujillo, A., Georges, N., and Alcayaga-Miranda, F. (2021). Camouflage strategies for therapeutic exosomes evasion from phagocytosis. J Adv Res 31, 61-74. 10.1016/j.jare.2021.01.001.
[116]. Belhadj, Z., He, B., Deng, H., Song, S., Zhang, H., Wang, X., Dai, W., and Zhang, Q. (2020). A combined "eat me/don't eat me" strategy based on extracellular vesicles for anticancer nanomedicine. J Extracell Vesicles 9, 1806444. 10.1080/20013078.2020.1806444.
[117]. Brown, S., Heinisch, I., Ross, E., Shaw, K., Buckley, C.D., and Savill, J. (2002). Apoptosis disables CD31-mediated cell detachment from phagocytes promoting binding and engulfment. Nature 418, 200-203. 10.1038/nature00811.
[118]. Barkal, A.A., Weiskopf, K., Kao, K.S., Gordon, S.R., Rosental, B., Yiu, Y.Y., George, B.M., Markovic, M., Ring, N.G., Tsai, J.M., et al. (2018). Engagement of MHC class I by the inhibitory receptor LILRB1 suppresses macrophages and is a target of cancer immunotherapy. Nat Immunol 19, 76-84. 10.1038/s41590-017-0004-z.
[119]. Liang, Y., Iqbal, Z., Wang, J., Xu, L., Xu, X., Ouyang, K., Zhang, H., Lu, J., Duan, L., and Xia, J. (2022). Cell-derived extracellular vesicles for CRISPR/Cas9 delivery: engineering strategies for cargo packaging and loading. Biomaterials Science 10, 4095-4106.
[120]. Konstantinidis, E., Molisak, A., Perrin, F., Streubel-Gallasch, L., Fayad, S., Kim, D.Y., Petri, K., Aryee, M.J., Aguilar, X., György, B., et al. (2022). CRISPR-Cas9 treatment partially restores amyloid-β 42/40 in human fibroblasts with the Alzheimer's disease PSEN 1 M146L mutation. Mol Ther Nucleic Acids 28, 450-461. 10.1016/j.omtn.2022.03.022.
[121]. György, B., Lööv, C., Zaborowski, M.P., Takeda, S., Kleinstiver, B.P., Commins, C., Kastanenka, K., Mu, D., Volak, A., Giedraitis, V., et al. (2018). CRISPR/Cas9 Mediated Disruption of the Swedish APP Allele as a Therapeutic Approach for Early-Onset Alzheimer's Disease. Mol Ther Nucleic Acids 11, 429-440. 10.1016/j.omtn.2018.03.007.
[122]. He, A., Wang, M., Li, X., Chen, H., Lim, K., Lu, L., and Zhang, C. (2023). Role of Exosomes in the Pathogenesis and Theranostic of Alzheimer's Disease and Parkinson's Disease. Int J Mol Sci 24. 10.3390/ijms241311054.
[123]. Xu, M., Feng, T., Liu, B., Qiu, F., Xu, Y., Zhao, Y., and Zheng, Y. (2021). Engineered exosomes: desirable target-tracking characteristics for cerebrovascular and neurodegenerative disease therapies. Theranostics 11, 8926-8944. 10.7150/thno.62330.
[124]. Tan, F., Li, X., Wang, Z., Li, J., Shahzad, K., and Zheng, J. (2024). Clinical applications of stem cell-derived exosomes. Signal Transduct Target Ther 9, 17. 10.1038/s41392-023-01704-0.
[125]. Han, M., Yang, H., Lu, X., Li, Y., Liu, Z., Li, F., Shang, Z., Wang, X., Li, X., and Li, J. (2022). Three-dimensional-cultured MSC-derived exosome-hydrogel hybrid microneedle array patch for spinal cord repair. Nano letters 22, 6391-6401.
[126]. Dehghani, S., Ocakcı, O., Hatipoglu, P.T., Özalp, V.C., and Tevlek, A. (2025). Exosomes as Biomarkers and Therapeutic Agents in Neurodegenerative Diseases: Current Insights and Future Directions. Mol Neurobiol 62, 9190-9215. 10.1007/s12035-025-04825-5.
[127]. Duma, C., Kopyov, O., Kopyov, A., Berman, M., Lander, E., Elam, M., Arata, M., Weiland, D., Cannell, R., Caraway, C., et al. (2019). Human intracerebroventricular (ICV) injection of autologous, non-engineered, adipose-derived stromal vascular fraction (ADSVF) for neurodegenerative disorders: results of a 3-year phase 1 study of 113 injections in 31 patients. Mol Biol Rep 46, 5257-5272. 10.1007/s11033-019-04983-5.
[128]. Broadwell, R.D., and Balin, B.J. (1985). Endocytic and exocytic pathways of the neuronal secretory process and trans-synaptic transfer of wheat germ agglutinin-horseradish peroxidase in vivo. J Comp Neurol 242, 632-650. 10.1002/cne.902420410.
[129]. Crowe, T.P., and Hsu, W.H. (2022). Evaluation of Recent Intranasal Drug Delivery Systems to the Central Nervous System. Pharmaceutics 14. 10.3390/pharmaceutics14030629.
[130]. Cowan, C.M., and Roskams, A.J. (2002). Apoptosis in the mature and developing olfactory neuroepithelium. Microsc Res Tech 58, 204-215. 10.1002/jemt.10150.
[131]. Li, Y., Field, P.M., and Raisman, G. (2005). Olfactory ensheathing cells and olfactory nerve fibroblasts maintain continuous open channels for regrowth of olfactory nerve fibres. Glia 52, 245-251. 10.1002/glia.20241.
[132]. Gotoh, S., Kawabori, M., and Fujimura, M. (2024). Intranasal administration of stem cell-derived exosomes for central nervous system diseases. Neural Regen Res 19, 1249-1255. 10.4103/1673-5374.385875.