Applications of Digital PCR in Clinical Laboratory Medicine: Pathogen Detection and Early Cancer Screening
Research Article
Open Access
CC BY

Applications of Digital PCR in Clinical Laboratory Medicine: Pathogen Detection and Early Cancer Screening

Ying Wen 1*
1 Shenzhen School of Northeast Normal University Affiliated High School
*Corresponding author: 1939663992@qq.com
Published on 14 October 2025
Journal Cover
TNS Vol.141
ISSN (Print): 2753-8826
ISSN (Online): 2753-8818
ISBN (Print): 978-1-80590-395-6
ISBN (Online): 978-1-80590-396-3
Download Cover

Abstract

This review focuses on the recent development of digital polymerase chain reaction (dPCR) in pathogen detection and cancer early screening. dPCR partitions samples into multiple independent units,enabling absolute quantification of target molecules. It surpasses traditional qPCR in sensitivity and accuracy. Nevertheless, it has limitations, such as the inability to distinguish between live and dead bacteria and relatively high costs. In virus detection, dPCR notably enhances the early diagnosis rate of COVID -19 and shortens the HIV detection window period. In cancer early screening, it demonstrates high sensitivity in detecting early-stage thyroid cancers. Despite existing drawbacks, with technological advancements, dPCR is expected to become a core molecular diagnostic tool, contributing significantly to public health and cancer prevention and control. Although there was still scope for improvement regarding cost and automation, digital PCR would develop more efficiently and cost-effectively through technological changes. it was anticipated that digital PCR would become a central tool for molecular diagnosis and play a bigger part in public health and in the prevention and treatment of cancer.

Keywords:

digital PCR, clinical application, pathogen detection, early cancer screening

View PDF
Wen,Y. (2025). Applications of Digital PCR in Clinical Laboratory Medicine: Pathogen Detection and Early Cancer Screening. Theoretical and Natural Science,141,58-62.

References

[1]. Hindson, B. J., Ness, K. D., Masquelier, D. A., Belgrader, P., Heredia, N. J., Makarewicz, A. J., Bright, I. J., Lucero, M. Y., Hiddessen, A. L., Legler, T. C., Kitano, T. K., Hodel, M. R., Petersen, J. F., Wyatt, P. W., Steenblock, E. R., Shah, P. H., Bousse, L. J., Troup, C. B., Mellen, J. C., Wittmann, D. K., Erndt, N.G., Cauley, T.H., Koehler, R.T., So, A.P., Dube, S., Rose, K.A., Montesclaros, L., Wang, S., Stumbo, D.P., Hodges, S.P., Romine, S., Milanovich, F.P., White, H.E., Regan, J.F., Karlin-Neumann, G.A., Hindson, C.M., Saxonov, S. and Colston, B. W. (2011) High-throughput droplet digital PCR system for absolute quantitation of DNA copy number. Analytical Chemistry, 83, 8604–8610.

[2]. Kanagal-Shamanna, R. (2016) Digital PCR: Principles and Applications. Methods in Molecular Biology, 1392, 43–50.

[3]. Quan, P. L., Sauzade, M. and Brouzes, E. (2018) dPCR: A Technology Review. Sensors, 18, 1271.

[4]. Falzone, L., Musso, N., Gattuso, G., Bongiorno, D., Palermo, C. I., Scalia, G., Libra, M. and Stefani, S. (2020) Sensitivity assessment of droplet digital PCR for SARS-CoV-2 detection. International Journal of Molecular Medicine, 46, 957–964.

[5]. Suo, T., Liu, X., Feng, J., Guo, M., Hu, W., Guo, D., Ullah, H., Yang, Y., Zhang, Q., Wang, X., Sajid, M., Huang, Z., Deng, L., Chen, T., Liu, F., Xu, K., Liu, Y., Zhang, Q., Liu, Y., Xiong, Y., Chen, G., Lan, K. and Chen, Y. (2020) ddPCR: a more accurate tool for SARS-CoV-2 detection in low viral load specimens. Emerging Microbes & Infections, 9, 1259–1268.

[6]. Liu, R., Han, H., Liu, F., Lv, Z., Wu, K., Liu, Y., Feng, Y. and Zhu, C. (2020) Positive rate of RT-PCR detection of SARS-CoV-2 infection in 4880 cases from one hospital in Wuhan, China, from Jan to Feb 2020. Clinica Chimica Acta, 505, 172–175.

[7]. Dong, L., Zhou, J., Niu, C., Wang, Q., Pan, Y., Sheng, S., Wang, X., Zhang, Y., Yang, J., Liu, M., Zhao, Y., Zhang, X., Zhu, T., Peng, T., Xie, J., Gao, Y., Wang, D., Dai, X. and Fang, X. (2021) Highly accurate and sensitive diagnostic detection of SARS-CoV-2 by digital PCR. Talanta, 224, 121726.

[8]. Vasudevan, H. N., Xu, P., Servellita, V., Miller, S., Liu, L., Gopez, A., Chiu, C. Y. and Abate, A. R. (2021) Digital droplet PCR accurately quantifies SARS-CoV-2 viral load from crude lysate without nucleic acid purification. Scientific Reports, 11, 780.

[9]. Tan, C., Fan, D., Wang, N., Wang, F., Wang, B., Zhu, L. and Guo, Y. (2021) Applications of digital PCR in COVID-19 pandemic. View, 2, 20200082.

[10]. Phelps, R., Robbins, K., Liberti, T., Machuca, A., Leparc, G., Chamberland, M., Kalish, M., Hewlett, I., Folks, T., Lee, L. M. and McKenna, M. (2004) Window-period human immunodeficiency virus transmission to two recipients by an adolescent blood donor. Transfusion, 44, 929–933.

[11]. Alteri, C., Scutari, R., Stingone, C., Maffongelli, G., Brugneti, M., Falasca, F., Martini, S., Bertoli, A., Turriziani, O., Sarmati, L., Coppola, N., Andreoni, M., Santoro, M. M., Perno, C. F., Ceccherini-Silberstein, F. and Svicher, V. (2019) Quantification of HIV-DNA and residual viremia in patients starting ART by droplet digital PCR: Their dynamic decay and correlations with immunological parameters and virological success. Journal of Clinical Virology, 117, 61–67.

[12]. Levy, C. N., Hughes, S. M., Roychoudhury, P., Reeves, D. B., Amstuz, C., Zhu, H., Huang, M. L., Wei, Y., Bull, M. E., Cassidy, N. A. J., McClure, J., Frenkel, L. M., Stone, M., Bakkour, S., Wonderlich, E. R., Busch, M. P., Deeks, S. G., Schiffer, J. T., Coombs, R. W., Lehman, D. A., Jerome, K.R. and Hladik, F. (2021) A highly multiplexed droplet digital PCR assay to measure the intact HIV-1 proviral reservoir. Cell reports. Medicine, 2, 100243.

[13]. Li, X., Du, H., Luo, J., Ding, W., Lai, B., He, J., Xu, S. and Zhang, Y. (2020) Comparison of the Clinical Validity of Droplet Digital PCR to ARMS-PCR for BRAF V600E Mutation Detection in Thyroid Nodules. Journal of Clinical Laboratory Analysis, 34, e23458.

[14]. Ma, H. J., Yang, J. C., Leng, Z. P., Chang, Y., Kang, H. and Teng, L. H. (2017) Preoperative prediction of papillary thyroid microcarcinoma via multiparameter ultrasound. Acta Radiologica, 58, 1303–1311.

Cite this article

Wen,Y. (2025). Applications of Digital PCR in Clinical Laboratory Medicine: Pathogen Detection and Early Cancer Screening. Theoretical and Natural Science,141,58-62.

Data availability

The datasets used and/or analyzed during the current study will be available from the authors upon reasonable request.

About volume

Volume title: Proceedings of ICBioMed 2025 Symposium: AI for Healthcare: Advanced Medical Data Analytics and Smart Rehabilitation

ISBN: 978-1-80590-395-6(Print) / 978-1-80590-396-3(Online)
Editor: Alan Wang
Conference date: 17 October 2025
Series: Theoretical and Natural Science
Volume number: Vol.141
ISSN: 2753-8818(Print) / 2753-8826(Online)