References
[1]. López-Otín, C., Blasco, M. A., Partridge, L., Serrano, M., & Kroemer, G. (2023). Hallmarks of aging: An expanding universe. Cell, 186(2), 243–278.
[2]. Venkatapuram, S., & Amuthavalli Thiyagarajan, J. (2023). The Capability Approach and the WHO healthy ageing framework (for the UN Decade of Healthy Ageing). Age and ageing, 52(Suppl 4), iv6–iv9.
[3]. Seim, I., Ma, S., Zhou, X., Gerashchenko, M. V., Lee, S. G., Suydam, R., George, J. C., Bickham, J. W., & Gladyshev, V. N. (2014). The transcriptome of the bowhead whale Balaena mysticetus reveals adaptations of the longest-lived mammal. Aging, 6(10), 879–899.
[4]. Keane, M., Semeiks, J., Webb, A. E., Li, Y. I., Quesada, V., Craig, T., Madsen, L. B., van Dam, S., Brawand, D., Marques, P. I., Michalak, P., Kang, L., Bhak, J., Yim, H. S., Grishin, N. V., Nielsen, N. H., Heide-Jørgensen, M. P., Oziolor, E. M., Matson, C. W., Church, G. M., … de Magalhães, J. P. (2015). Insights into the evolution of longevity from the bowhead whale genome. Cell reports, 10(1), 112–122.
[5]. Lagunas-Rangel F. A. (2021). Deciphering the whale's secrets to have a long life. Experimental gerontology, 151, 111425.
[6]. Xia, C., Møller, A.P. Long-lived birds suffer less from oxidative stress. Avian Res 9, 41 (2018).
[7]. Nielsen, J., Hedeholm, R. B., Heinemeier, J., Bushnell, P. G., Christiansen, J. S., Olsen, J., Ramsey, C. B., Brill, R. W., Simon, M., Steffensen, K. F., & Steffensen, J. F. (2016). Eye lens radiocarbon reveals centuries of longevity in the Greenland shark (Somniosus microcephalus). Science (New York, N.Y.), 353(6300), 702–704.
[8]. Buffenstein R. (2005). The naked mole-rat: a new long-living model for human aging research. The journals of gerontology. Series A, Biological sciences and medical sciences, 60(11), 1369–1377.
[9]. Tyshkovskiy, A., Ma, S., Shindyapina, A. V., Tikhonov, S., Lee, S. G., Bozaykut, P., Castro, J. P., Seluanov, A., Schork, N. J., Gorbunova, V., Dmitriev, S. E., Miller, R. A., & Gladyshev, V. N. (2023). Distinct longevity mechanisms across and within species and their association with aging. Cell, 186(13), 2929–2949.e20.
[10]. Domínguez-de-Barros, A., Sifaoui, I., Dorta-Guerra, R., Lorenzo-Morales, J., Castro-Fuentes, R., & Córdoba-Lanús, E. (2025). Telomere- and oxidative stress dynamics in Psittacidae species with different longevity trajectories. GeroScience, 47(1), 121–134.
[11]. Calcinotto, A., Kohli, J., Zagato, E., Pellegrini, L., Demaria, M., & Alimonti, A. (2019). Cellular Senescence: Aging, Cancer, and Injury. Physiological reviews, 99(2), 1047–1078.
[12]. Bayona-Feliu, A., & Aguilera, A. (2025). Transcription-Replication Conflicts: Unlocking New Frontiers in Cancer. BioEssays : news and reviews in molecular, cellular and developmental biology, 47(8), e70025.
[13]. Mikuła-Pietrasik, J., Pakuła, M., Markowska, M., Uruski, P., Szczepaniak-Chicheł, L., Tykarski, A., & Książek, K. (2021). Nontraditional systems in aging research: an update. Cellular and molecular life sciences : CMLS, 78(4), 1275–1304.
[14]. Banerjee, A., Baker, M. L., Kulcsar, K., Misra, V., Plowright, R., & Mossman, K. (2020). Novel Insights Into Immune Systems of Bats. Frontiers in immunology, 11, 26.
[15]. de Haan, G., & Lazare, S. S. (2018). Aging of hematopoietic stem cells. Blood, 131(5), 479–487.
[16]. Austad S. N. (2011). Candidate bird species for use in aging research. ILAR journal, 52(1), 89–96.