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Abstract.  The group theory, as one of the cornerstones of the modern algebra, has a
profound historical trajectory that reflects the evolution of the mathematical thought. This
comprehensive paper analyses the historical development of the group theory and provides
an overview of the interconnectedness of the several key theorems in the group theory: The
Lagrange’s Theorem, the Fermat’s Little Theorem and the Euler’s Theorem. This paper
begins by establishing the modern group-theoretical framework within the Lagrange’s
Theorem on the link between the order of groups and that of its subgroups. Then, an
extension onto other related theorems are provided. In all, this paper is highly interlinking
among the ideas in group theory. Ultimately, this study not only demonstrates the beauty of
mathematical interconnections but also highlights their continuing relevance for the modern
applications, showing how the classical results remain relevant to guide contemporary
explorations in algebra, number theory, and related disciplines.
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1. Introduction

Group Theory is fundamentally about the algebraic formalization of symmetric structures, with wide
application in both the physics and chemistry fields. It was first brought up in the 1770s, then had
several major breakthroughs in the 19th century by mathematicians such as Cauchy, Cayley and
Hölder [1]. Up to the 18th century, mathematicians mainly focused on the study of polynomials [1].
The 19th century marked a pivotal transition for algebra, which by the 20th century had become a
discipline primarily concerned with abstract, axiomatic structures [1]. Modern group theory
development thus began in the 20th centuries even though World War I has caused a temporary
cease in the study of group theory [2]. In 1932, Wilhelm Magnus solved the world problem for one-
relator groups, and combinatorial group theory flourished throughout the 1930s to 1960s, setting the
foundations for modern research in geometric and probabilistic group theory, as well as in regions
such as cryptography and group theory [2].

The Italian French mathematician Joseph-Louis Lagrange, perhaps, contributed the most in the
analysis field [3]. His contribution to the theory of equations has deeply influenced the development
of group theory and Galois theory as well [3]. Lagrange’s Theorem was initially not aimed at
developing the group theory but rather to solve polynomials with degree 5 or above, since when
Lagrange himself launched the results, the concept of group theory was yet to be established [4].
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Lagrange’s theorem has wide applications. Modern studies have been done on its analog for
continued fractions on the Heisenberg Group [5], as well as its substantiation in for hom-groups
which is useful in the regions of nonassociative Hopf algebras, combinatorics and cryptography [6].

With the recognition of the importance of these theorems, Section 2 provides the proof for
Lagrange’s Theorem and section 3 provides extensions onto Fermat’s Little Theorem and Euler’s
Theorem.

2. Lagrange’s Theorem

2.1. Relevant definitions and lemmas

Definition of subgroup
If    ,     is considered a subgroup of     if and only if     is closed under production and

inversion.
Definition of Coset
Let      represent a group, and ℋ    . A left coset of      in      is defined as a subset

satisfying
    and     for a fixed v.
Proposition 1
Let     and     be two cosets of     in    , if    , then the cosets disjoint and

have the same cardinality as    .
Proof for proposition 1
Let    and    and     and     both be cosets of     in    .
Assume that the two cosets are not disjoint, then there definitely exist     , and  

 such that   .
Thus,     and    , which means that    .
Similarly, it can be shown that    .
Thus,    , indicating    .
Hence,    and    since b is arbitrary.
By symmetry, the proof for      can be done similarly, and by double inclusion,  

 

2.2. Proof of lagrange’s Theorem

Theorem
For a finitely defined group     and    , the cardinality of     is a factor the cardinality of

   , meaning    .
Proof
    sits in the union of     where    , i.e.    , and    .
Let     be elements of     such that    .
Note that      holds if and only if     , Then 

  Thus,    

3. Application

Lagrange's Theorem is of high significance in the field of number theory [7,8]. It provides a
powerful and beautiful bridge between the abstract structure of groups and the fundamental

V ⊆ R V R V

V ≤ V H V

vH =  {vj :  j ∈ H } vH ∈ V

vH v’H H V vH   ≠  v’H
H

v ∈ V    v' ∈ V vH v’H H V

x ∈ vH ∩ v'H

, 
' ∈ H    x = v = v'

'
v = v'' −1

' −1 ∈ H v ∈ v'H
v' ∈ vH

∀b ∈ H : vb = v'' −1b ' −1b ∈ H

vk ∈ v'H   vH ⊆ v'H  
v'H ⊆ vH

vH = v'H .

V H ≤ V H

V |H | | |V |

V vH v ∈ V V   =  UvH v  =  e ⋅ v  ∈  vH
v1,  v2,  v3 … vn V V =  UiviH

viH   =  vjH i  =  j
  |V | =  ∑n

i=1 |viH | = ∑n
i=1 |H | = n |H |, |H | |  |V |.
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arithmetic properties of integers. One can easily and directly apply Lagrange's theorem to derive
several fundamental results in the number theory field such as Euler's Theorem and Fermat's Little
Theorem.

3.1. Relevant definitions, corollaries and proofs

Binary operation
Let     be a set; a function     is a binary operation and its image     is denoted

as ab.
Symmetric groups
Sym(A) is the set of bijections from A to A, i.e.,      is a binary

operation.
Properties of symmetric groups
1) Associative;    ,   
2) There exists a unit    ,   
3) Inversible;    
4) Inverse on     is unique.
Cyclic subgroup
A subgroup of Sym(A) is cyclic if and only if it is generated by one single element, i.e.,  

 ,    .
Euler’s totient function
The number of     satisfying     and   , denoted by    
Equivalence relation
For a set    , a relation     on     is a subset of    . It is defined that     is    -

related to    if and only if     and is written as    
Properties of equivalence relation
1) R is reflective if and only if    ,   
2) R is symmetric if and only if    ,   gives   
3) R is transitive if and only if    ,   gives    
A relation satisfying all 3 criteria is said to be an equivalence relation, denoted by “   ”.
Lying in the same coset
Let    . Define     if and only if     for    .
Proof for lying in the same coset
Take    .    , hence    .
Take    . If    , thus    . Hence     and    .
Take     . Assume     and     , then     . Hence 

  and   
Equivalent class
Denoted by    .
Corollary
For a finitely defined group     with identity e and     then     and    .
Proof
   equals to the cardinality of    where     is the cyclic subgroup generated by v.

A A ×A → A (a, b)

Sym(A) × Sym(A) → Sym(A)

∀i, j, k ∈    (ij)k = i(jk).

e ∈   ∀i ∈   : e ∙ i = i ∙ e = i.
∀i ∈ , there exists i' ∈  : ii' = i'i = e.


H =< {a} > a ∈ Sym(A)

t ∈ Z 1 ≤ t ≤ j  gcd(t, j) = 1 φ(j)

T R T T ×T i ∈ T R

j ∈ T   (i, j) ∈ R iRj.

∀i ∈ A  iRi.
∀i, j ∈ A  iRj   jRi.

∀i, j, k ∈ A   (iRj, jRk)  iRk.

~

H ≤ G i~Hp i−1u ∈ H i,u ∈ G

u ∈ G u ∙ u−1 = 1 ∈ G u~Hu

u, p ∈ G u−1p ∈ H (u−1p)
−1

∈ H u−1p ∈ H p~Hu

i,u, k ∈ G i−1u ∈ H  j−1k ∈ H (i−1u) (j−1u) ∈ H

 i−1k ∈ H  i~Hk .

[a] = {b ∈ A  : a~b}

V v ∈ V o (v) | |V | v|V | = e

o (v)    < v >   < v >
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Since    , by Lagrange’s Theorem,    . Thus,     where   .
Thus,    .

3.2. Fermat’s little Theorem

Definition
Let      be a prime number while      that does not share any common factor as     . Thus,  

 .
Proof

     which is a group of size     , so     , so     equals to    , so  

 , so    .

3.3. Euler’s Theorem

Definition
Let     . If      and does not possess a common factor as m, then  

 .
Proof
Since     and    ,    , hence    ,

hence    .

4. Conclusion

This paper provides basic insights on how Lagrange’s Theorem can be extended and applied not
only in the region of group theory itself but also in other areas, especially in group theory. Lagrange
Theorem provides alternative proofs for Fermat’s Little Theorem and Euler’s Theorem, integrating
these mathematical concepts and forming a more comprehensive picture altogether. It is in hope that
further developments can be made on Lagrange’s Theorem. In particular, its applications may extend
beyond classical number theory to modern fields such as cryptography, algebraic coding theory, and
computational mathematics, where group theory methods are increasingly used. These directions
highlight the enduring value of Lagrange's theorem as a foundational tool and a bridge for
interdisciplinary exploration.
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