References
[1]. Dementia. https: //www.who.int/news-room/fact-sheets/detail/dementia.
[2]. Lane, C. A., Hardy, J. & Schott, J. M. Alzheimer’s disease. Eur. J. Neurol. 25, 59–70 (2018).
[3]. Boucher, L. 1906: The dawn of Alzheimer’s disease. Nature (2024) doi: 10.1038/d41586-024-02881-w.
[4]. Knopman, D. S., Petersen, R. C. & Jack, C. R. A brief history of “Alzheimer disease”. Neurology 92, 1053–1059 (2019).
[5]. Hardy, J. A. & Higgins, G. A. Alzheimer’s Disease: The Amyloid Cascade Hypothesis. Science 256, 184–185 (1992).
[6]. Mahley, R. W., Weisgraber, K. H. & Huang, Y. Apolipoprotein E4: A causative factor and therapeutic target in neuropathology, including Alzheimer’s disease. Proc. Natl. Acad. Sci. 103, 5644–5651 (2006).
[7]. The history of Alzheimer’s disease. https: //www.nature.com/immersive/alzheimers-disease-history/index.html.
[8]. Näslund, J. et al. Correlation Between Elevated Levels of Amyloid β-Peptide in the Brain and Cognitive Decline. JAMA 283, 1571–1577 (2000).
[9]. Fratiglioni, L., Ahlbom, A., Viitanen, M. & Winblad, B. Risk factors for late-onset Alzheimer’s disease: a population-based, case-control study. Ann. Neurol. 33, 258–266 (1993).
[10]. Selkoe, D. J. Amyloid β-Protein and the Genetics of Alzheimer’s Disease *. J. Biol. Chem. 271, 18295–18298 (1996).
[11]. Huang, Y.-W. A. et al. Differential Signaling Mediated by ApoE2, ApoE3, and ApoE4 in Human Neurons Parallels Alzheimer’s Disease Risk. J. Neurosci. (2019) doi: 10.1523/jneurosci.2994-18.2019.
[12]. Smelt, A. H. M. & de Beer, F. Apolipoprotein E and familial dysbetalipoproteinemia: clinical, biochemical, and genetic aspects. Semin. Vasc. Med. 4, 249–257 (2004).
[13]. Ertl, H. 1993: A major genetic risk factor for late-onset Alzheimer’s disease. Nature (2024) doi: 10.1038/d41586-024-02885-6.
[14]. Alzheimer’s Disease Data Download (SEA-AD) - brain-map.org. https: //portal.brain-map.org/explore/seattle-alzheimers-disease/seattle-alzheimers-disease-brain-cell-atlas-download?edit& language=en#.
[15]. AWS S3 Explorer. https: //sea-ad-single-cell-profiling.s3.amazonaws.com/index.html#MTG/RNAseq/donor_objects/.
[16]. Slovin, S. et al. Single-Cell RNA Sequencing Analysis: A Step-by-Step Overview. in RNA Bioinformatics (ed. Picardi, E.) 343–365 (Springer US, New York, NY, 2021). doi: 10.1007/978-1-0716-1307-8_19.
[17]. Gayoso, A. et al. A Python library for probabilistic analysis of single-cell omics data. Nat. Biotechnol. 40, 163–166 (2022).
[18]. Danese, A. et al. EpiScanpy: integrated single-cell epigenomic analysis. Nat. Commun. 12, 5228 (2021).
[19]. Kukull, W. A. & Bowen, J. D. Dementia epidemiology. Med. Clin. 86, 573–590 (2002).
[20]. Lo, R. Y. et al. Longitudinal Change of Biomarkers in Cognitive Decline. Arch. Neurol. 68, 1257–1266 (2011).
[21]. DeKosky, S. T. & Marek, K. Looking Backward to Move Forward: Early Detection of Neurodegenerative Disorders. Science 302, 830–834 (2003).
[22]. Shi, Y. et al. ApoE4 markedly exacerbates tau-mediated neurodegeneration in a mouse model of tauopathy. Nature 549, 523–527 (2017).
[23]. Jack, C. R. et al. Rates of hippocampal atrophy correlate with change in clinical status in aging and AD. Neurology 55, 484–490 (2000).
[24]. Amieva, H. et al. Prodromal Alzheimer’s disease: Successive emergence of the clinical symptoms. Ann. Neurol. 64, 492–498 (2008).
[25]. Emrani, S., Arain, H. A., DeMarshall, C. & Nuriel, T. APOE4 is associated with cognitive and pathological heterogeneity in patients with Alzheimer’s disease: a systematic review. Alzheimers Res. Ther. 12, 141 (2020).
[26]. Dickerson, B. C. et al. Increased hippocampal activation in mild cognitive impairment compared to normal aging and AD. Neurology 65, 404–411 (2005).
[27]. Gharbi-Meliani, A. et al. The association of APOE ε4 with cognitive function over the adult life course and incidence of dementia: 20 years follow-up of the Whitehall II study. Alzheimers Res. Ther. 13, 5 (2021).
[28]. Dubois, B. et al. Research criteria for the diagnosis of Alzheimer’s disease: revising the NINCDS–ADRDA criteria. Lancet Neurol. 6, 734–746 (2007).
[29]. Hua, X. et al. Tensor-based morphometry as a neuroimaging biomarker for Alzheimer’s disease: An MRI study of 676 AD, MCI, and normal subjects. NeuroImage 43, 458–469 (2008).
[30]. Huang, Y. & Mucke, L. Alzheimer Mechanisms and Therapeutic Strategies. Cell 148, 1204–1222 (2012).
[31]. Safieh, M., Korczyn, A. D. & Michaelson, D. M. ApoE4: an emerging therapeutic target for Alzheimer’s disease. BMC Med. 17, 64 (2019).
[32]. Bennett, D. A. et al. Apolipoprotein E ε4 allele, AD pathology, and the clinical expression of Alzheimer’s disease. Neurology 60, 246–252 (2003).
[33]. Wadhwani, A. R., Affaneh, A., Van Gulden, S. & Kessler, J. A. Neuronal apolipoprotein E4 increases cell death and phosphorylated tau release in alzheimer disease. Ann. Neurol. 85, 726–739 (2019).
[34]. Youmans, K. L. et al. APOE4-specific Changes in Aβ Accumulation in a New Transgenic Mouse Model of Alzheimer Disease *. J. Biol. Chem. 287, 41774–41786 (2012).
[35]. Ali, A. B., Islam, A. & Constanti, A. The fate of interneurons, GABA receptor sub-types and perineuronal nets in Alzheimer’s disease. Brain Pathol. 33, e13129 (2023).
[36]. Michaud, F. et al. Altered firing output of VIP interneurons and early dysfunctions in CA1 hippocampal circuits in the 3xTg mouse model of Alzheimer’s disease. eLife 13, RP95412 (2024).
[37]. Wang, C. et al. Selective removal of astrocytic APOE4 strongly protects against tau-mediated neurodegeneration and decreases synaptic phagocytosis by microglia. Neuron 109, 1657-1674.e7 (2021).
[38]. Neitzel, J. et al. ApoE4 associated with higher tau accumulation independent of amyloid burden. Alzheimers Dement. 16, e046206 (2020).
[39]. van der Kant, R., Goldstein, L. S. B. & Ossenkoppele, R. Amyloid-β-independent regulators of tau pathology in Alzheimer disease. Nat. Rev. Neurosci. 21, 21–35 (2020).
[40]. Lee, S.-H. et al. Activation of specific interneurons improves V1 feature selectivity and visual perception. Nature 488, 379–383 (2012).
[41]. Urban-Ciecko, J. & Barth, A. L. Somatostatin-expressing neurons in cortical networks. Nat. Rev. Neurosci. 17, 401–409 (2016).
[42]. Li, H. et al. Loss of SST and PV positive interneurons in the ventral hippocampus results in anxiety-like behavior in 5xFAD mice. Neurobiol. Aging 117, 165–178 (2022).
[43]. Riedel, B. C., Thompson, P. M. & Brinton, R. D. Age, APOE and sex: Triad of risk of Alzheimer’s disease. J. Steroid Biochem. Mol. Biol. 160, 134–147 (2016).
[44]. Schmid, L. C. et al. Dysfunction of Somatostatin-Positive Interneurons Associated with Memory Deficits in an Alzheimer’s Disease Model. Neuron 92, 114–125 (2016).
[45]. Sst Chodl Gabaergic Cortical Interneuron Cell Types - CZ CELLxGENE CellGuide. Cellxgene Data Portal https: //cellxgene.cziscience.com/.
[46]. Lv, S. et al. ApoE4 exacerbates the senescence of hippocampal neurons and spatial cognitive impairment by downregulating acetyl-CoA level. Aging Cell 22, e13932 (2023).
[47]. O’Dwyer, L. et al. Reduced Hippocampal Volume in Healthy Young ApoE4 Carriers: An MRI Study. PLOS ONE 7, e48895 (2012).
[48]. Pfeffer, C. K., Xue, M., He, M., Huang, Z. J. & Scanziani, M. Inhibition of inhibition in visual cortex: the logic of connections between molecularly distinct interneurons. Nat. Neurosci. 16, 1068–1076 (2013).
[49]. Yavorska, I. & Wehr, M. Somatostatin-Expressing Inhibitory Interneurons in Cortical Circuits. Front. Neural Circuits 10, (2016).
[50]. Tasic, B. et al. Adult mouse cortical cell taxonomy revealed by single cell transcriptomics. Nat. Neurosci. 19, 335–346 (2016)..
[51]. Zhou, J.-N., Hofman, M. A. & Swaab, D. F. VIP neurons in the human SCN in relation to sex, age, and Alzheimer’s disease. Neurobiol. Aging 16, 571–576 (1995).
[52]. VIP Enhances Phagocytosis of Fibrillar Beta-Amyloid by Microglia and Attenuates Amyloid Deposition in the Brain of APP/PS1 Mice | PLOS One. https: //journals.plos.org/plosone/article?id=10.1371/journal.pone.0029790.