References
[1]. M.S. Moran, Radiation therapy in the locoregional treatment of triple-negative breast cancer, The Lancet. Oncology 16(3) (2015) e113-22.
[2]. A.N. Giaquinto, H. Sung, L.A. Newman, R.A. Freedman, R.A. Smith, J. Star, A. Jemal, R.L. Siegel, Breast cancer statistics 2024, CA: a cancer journal for clinicians 74(6) (2024) 477-495.
[3]. G. Bianchini, C. De Angelis, L. Licata, L. Gianni, Treatment landscape of triple-negative breast cancer - expanded options, evolving needs, Nature reviews. Clinical oncology 19(2) (2022) 91-113.
[4]. Y. Hu, C. Wang, H. Liang, J. Li, Q. Yang, The treatment landscape of triple-negative breast cancer, Medical oncology (Northwood, London, England) 41(10) (2024) 236.
[5]. A.M. Karim, J. Eun Kwon, T. Ali, J. Jang, I. Ullah, Y.G. Lee, D.W. Park, J. Park, J.W. Jeang, S.C. Kang, Triple-negative breast cancer: epidemiology, molecular mechanisms, and modern vaccine-based treatment strategies, Biochemical pharmacology 212 (2023) 115545.
[6]. S. Dawood, Triple-negative breast cancer: epidemiology and management options, Drugs 70(17) (2010) 2247-58.
[7]. I. Susumu, I. Kiyotaka, S. Shinichi, U. Keiji, H. Naoki, Y. Hiromasa, T. Yoshinori, Benefits of terminal noncardioplegic warm blood retrograde perfusion after terminal warm blood cardioplegia perfusion prior to aortic unclamping in open heart surgery, The Journal of cardiovascular surgery 47(6) (2006) 677-82.
[8]. D.H. Schlesinger, G. Goldstein, H.D. Niall, The complete amino acid sequence of ubiquitin, an adenylate cyclase stimulating polypeptide probably universal in living cells, Biochemistry 14(10) (1975) 2214-8.
[9]. D.H. Schlesinger, G. Goldstein, Molecular conservation of 74 amino acid sequence of ubiquitin between cattle and man, Nature 255(5507) (1975) 423-4.
[10]. D. Popovic, D. Vucic, I. Dikic, Ubiquitination in disease pathogenesis and treatment, Nature medicine 20(11) (2014) 1242-53.
[11]. R. Kandel, J. Jung, S. Neal, Proteotoxic stress and the ubiquitin proteasome system, Seminars in cell & developmental biology 156 (2024) 107-120.
[12]. E. Rivkin, A.L. Kierszenbaum, M. Gil, L.L. Tres, Rnf19a, a ubiquitin protein ligase, and Psmc3, a component of the 26S proteasome, tether to the acrosome membranes and the head-tail coupling apparatus during rat spermatid development, Developmental dynamics : an official publication of the American Association of Anatomists 238(7) (2009) 1851-61.
[13]. C. Wu, Z. Su, M. Lin, J. Ou, W. Zhao, J. Cui, R.F. Wang, NLRP11 attenuates Toll-like receptor signalling by targeting TRAF6 for degradation via the ubiquitin ligase RNF19A, Nature communications 8(1) (2017) 1977.
[14]. Q. Zhu, J. Huang, H. Huang, H. Li, P. Yi, J.A. Kloeber, J. Yuan, Y. Chen, M. Deng, K. Luo, M. Gao, G. Guo, X. Tu, P. Yin, Y. Zhang, J. Su, J. Chen, Z. Lou, RNF19A-mediated ubiquitination of BARD1 prevents BRCA1/BARD1-dependent homologous recombination, Nature communications 12(1) (2021) 6653.
[15]. V.U. Bai, O. Hwang, G.W. Divine, E.R. Barrack, M. Menon, G.P. Reddy, C. Hwang, Averaged differential expression for the discovery of biomarkers in the blood of patients with prostate cancer, PloS one 7(4) (2012) e34875.
[16]. K. Im, S. Mareninov, M.F.P. Diaz, W.H. Yong, An Introduction to Performing Immunofluorescence Staining, Methods in molecular biology (Clifton, N.J.) 1897 (2019) 299-311.
[17]. H. Deng, G. Ji, J. Ma, J. Cai, S. Cheng, F. Cheng, RNF19A inhibits bladder cancer progression by regulating ILK ubiquitination and inactivating the AKT/mTOR signalling pathway, Biology direct 19(1) (2024) 102.
[18]. S. Zhu, M. Tao, Y. Li, X. Wang, Z. Zhao, Y. Liu, Q. Li, Q. Li, Y. Lu, Y. Si, S. Cao, J. Ye, H3K27me3 of Rnf19a promotes neuroinflammatory response during Japanese encephalitis virus infection, Journal of neuroinflammation 20(1) (2023) 168.
[19]. H. Zuo, J. Park, A. Frangaj, J. Ye, G. Lu, J.J. Manning, W.B. Asher, Z. Lu, G.B. Hu, L. Wang, J. Mendez, E. Eng, Z. Zhang, X. Lin, R. Grassucci, W.A. Hendrickson, O.B. Clarke, J.A. Javitch, A.D. Conigrave, Q.R. Fan, Promiscuous G-protein activation by the calcium-sensing receptor, Nature 629(8011) (2024) 481-488.
[20]. Q. Zhou, M.M. Zhang, M. Liu, Z.G. Tan, Q.L. Qin, Y.G. Jiang, LncRNA XIST sponges miR-199a-3p to modulate the Sp1/LRRK2 signal pathway to accelerate Parkinson's disease progression, Aging 13(3) (2021) 4115-4137.
[21]. R. Mohammad Malyar, H. Li, H. Enayatullah, L. Hou, R. Ahmad Farid, D. Liu, J. Akhter Bhat, J. Miao, F. Gan, K. Huang, X. Chen, Zinc-enriched probiotics enhanced growth performance, antioxidant status, immune function, gene expression, and morphological characteristics of Wistar rats raised under high ambient temperature, 3 Biotech 9(8) (2019) 291.
[22]. Y. Cheng, Y. Hu, H. Wang, Z. Zhao, X. Jiang, Y. Zhang, J. Zhang, Y. Tong, X. Qiu, Ring finger protein 19A is overexpressed in non-small cell lung cancer and mediates p53 ubiquitin-degradation to promote cancer growth, Journal of cellular and molecular medicine 25(16) (2021) 7796-7808.
[23]. P. Cohen, M. Tcherpakov, Will the ubiquitin system furnish as many drug targets as protein kinases?, Cell 143(5) (2010) 686-93.
[24]. E.C.A. Eleutherio, R.S. Silva Magalhães, A. de Araújo Brasil, J.R. Monteiro Neto, L. de Holanda Paranhos, SOD1, more than just an antioxidant, Archives of biochemistry and biophysics 697 (2021) 108701.
[25]. J. Niwa, S. Ishigaki, N. Hishikawa, M. Yamamoto, M. Doyu, S. Murata, K. Tanaka, N. Taniguchi, G. Sobue, Dorfin ubiquitylates mutant SOD1 and prevents mutant SOD1-mediated neurotoxicity, The Journal of biological chemistry 277(39) (2002) 36793-8.
[26]. L.J. Martin, S.J. Koh, A. Price, D. Park, B.W. Kim, Nuclear Localization of Human SOD1 in Motor Neurons in Mouse Model and Patient Amyotrophic Lateral Sclerosis: Possible Links to Cholinergic Phenotype, NADPH Oxidase, Oxidative Stress, and DNA Damage, International journal of molecular sciences 25(16) (2024).