References
[1]. Ji, Xinyu, et al. "SIAT‐WEXv2: A Wearable Exoskeleton for Reducing Lumbar Load during Lifting Tasks." Complexity 2020.1 (2020): 8849427.
[2]. Arık, Ece. Investigation of the Effect of Spine Health Training and Lumbal Region Support on Back Pain and Discomfort in City Bus Drivers. MS thesis. 2024.
[3]. Zhang, Y.; Ke, J.; Wu, X.; Luo, X. A Biomechanical Waist Comfort Model for Manual Material Lifting. Int. J. Environ. Res. Public Health 2020, 17, 5948. https: //doi.org/10.3390/ijerph17165948
[4]. de Looze, M. P., Bosch, T., Krause, F., Stadler, K. S., & O’Sullivan, L. W. (2015). Exoskeletons for industrial application and their potential effects on physical work load. Ergonomics, 59(5), 671–681. https: //doi.org/10.1080/00140139.2015.1081988
[5]. L. Grazi, B. Chen, F. Lanotte, N. Vitiello and S. Crea, "Towards methodology and metrics for assessing lumbar exoskeletons in industrial applications, " 2019 II Workshop on Metrology for Industry 4.0 and IoT (MetroInd4.0& IoT), Naples, Italy, 2019, pp. 400-404, doi: 10.1109/METROI4.2019.8792877. keywords: {Exoskeletons; Electromyography; Task analysis; Muscles; Kinematics; Physiology; Exoskeletons; benchmarking; industry 4.0; metrics},
[6]. TANG Xinyao, LIU Xiaoyi, WANG Xupeng, HAO Yuyang, ZHANG Xinyi. Research Status and Key Technology Analysis of Wearable Lumbar Spine Exoskeleton [J]. INFORMATION AND CONTROL, 2025, 54(2): 161-183. CSTR: 32166.14.xk.2024.2422
[7]. Qu Y, Wang X, Tang X, Liu X, Hao Y, Zhang X, Liu H, Cheng X. A Review of Wearable Back-Support Exoskeletons for Preventing Work-Related Musculoskeletal Disorders. Biomimetics (Basel). 2025 May 20; 10(5): 337. doi: 10.3390/biomimetics10050337. PMID: 40422167; PMCID: PMC12108747.
[8]. Koopman, A.S.; Kingma, I.; Faber, G.S.; de Looze, M.P.; van Dieën, J.H. Effects of a passive exoskeleton on the mechanical loading of the low back in static holding tasks. J. Biomech. 2019, 83, 97–103.
[9]. Bosch, T.; van Eck, J.; Knitel, K.; de Looze, M. The effects of a passive exoskeleton on muscle activity, discomfort and endurance time in forward bending work. Appl. Ergon. 2016, 54, 212–217.
[10]. Antwi-Afari, M.F.; Li, H.; Anwer, S.; Li, D.; Yu, Y.; Mi, H.Y.; Wuni, I.Y. Assessment of a passive exoskeleton system on spinal biomechanics and subjective responses during manual repetitive handling tasks among construction workers. Safety Sci. 2021, 142, 105382.
[11]. Ochia, Ruth S., and Peter R. Cavanagh. "Reliability of surface EMG measurements over 12 hours." Journal of electromyography and Kinesiology 17.3 (2007): 365-371.
[12]. Cole, D. C., et al. "Multivariate, longitudinal analysis of the impact of changes in office work environments on surface electromyography measures." International archives of occupational and environmental health 85 (2012): 493-503.
[13]. Brouwer, Niels P., et al. "Can intermittent changes in trunk extensor muscle length delay muscle fatigue development?." Journal of Biomechanics 162 (2024): 111881.
[14]. NIU Miaohe, LEI Fei. Motion intention recognition algorithms for lower limb exoskeleton [J]. CAAI Transactions on Intelligent Systems, 2025, 20(2): 407-415. doi: 10.11992/tis.202403025
[15]. Lugrís, Urbano, et al. "Human motion capture, reconstruction, and musculoskeletal analysis in real time." Multibody System Dynamics 60.1 (2024): 3-25.
[16]. Taborri, Juri, et al. "Sport biomechanics applications using inertial, force, and EMG sensors: A literature overview." Applied bionics and biomechanics 2020.1 (2020): 2041549.
[17]. Shi, Yongjun, et al. "Human joint torque estimation based on mechanomyography for upper extremity exosuit." Electronics 11.9 (2022): 1335.
[18]. Zhou, Dong, et al. "A real-time posture assessment system based on motion capture data for manual maintenance and assembly processes." The International Journal of Advanced Manufacturing Technology 131.3 (2024): 1397-1411.