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Abstract. Deep neural networks can be understood as discretizing a continuous dynamical
system. This literature review analyzes how the multi-particle dynamical system formulation
models the self-attention mechanism in transformers. We will discover how this formulation
enables the systematic study of the system's convergence towards clusters and its relation
with the Kuramoto oscillator.
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1. Introduction

Transformers have gained immense popularity in deep learning in the past few years. They have
achieved many advanced results and practical applications in deep learning tasks, such as machine
translation, file creation, and image processing. The key to the success of this algorithm relies on the
self-attention mechanism, which can encode input data in parallel, improving efficiency and
capturing complex correlations across different types of large datasets [1-4].

Building on our understanding on the transformer mechanism and the reasons for its success in
partical applications, we are going to review [5], a paper that delves into the mathematical
intricacies of the attention mechanism of the transformer from a multi-particle dynamical system
perspective. This will enable a systematic study of the attention's convergence towards clusters and
its relation with the Kuramoto oscillator in the simplified case of having only 2 particles. We end the
paper by introducing a practical application of Transformers to approximate Sumformers.

2. Background

2.1. Multi-Particle Dynamical System

The subject of multi-particle dynamical systems concerns the evolution in time of systems of    
particles. Where a particle is an element from the set     , e.g.     . More precisely, an
homogeneous, continuous-time dynamical system     , can be defined as the continuous map  

  that satisfies the following two relations for any     and  
 

1.    
2.    

n

X X = R
𝕕

ϕ

ϕ : R × Xn → Xn x = (x1, ...,xn) ∈ Xn

s, t ∈ R

ϕ(s + t,x) = ϕ(t,ϕ(s,x))
ϕ(0,x) = x
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The partial map fixing the time variable,    , is called the system’s flow, and the partial
map fixing the particles     is called the system’s trajectory.

Smooth dynamical systems can be modeled using ODEs. If we have a system      with flows  
 , then its trajectories     satisfy the initial value problem,     with  

  in which the vector field    .
In the case of multi-particle dynamical systems, the vector field      corresponding to each

particle    ,     is the sum of two factors: convection and diffusion. The convection factor
concerns the particle movement regardless of other particles, e.g., caused by an external force like
gravity. The diffusion factor concerns the particle movement that results from interacting with other
particles.

2.2. Neural Networks as dynamical systems

Deep neural networks can be thought of as discretizations of continuous dynamical systems ~[9].
This interpretation has been widely used in the literature in recent years since it allows numerical
analysis tools to understand and better design neural networks.

Resnet, a simple example The ResNet architecture is a simple example that illustrates well the
suitability of the dynamical system interpretation. We start from a simple initial value problem for a
first-order ODE,

(1)

where     and     is the value of the system at   . As simple as it is, it is
not always possible to solve (1) analytically. Nevertheless, numerical methods can find an
approximate solution at a given time     . For instance, the Euler method can find an approximate
solution to this problem in     steps by discretizing the time variable with step size  
  and using the first order approximation of the derivative    . By doing so,
we can estimate      from      by sequentially estimating      with the
iterative rule

(2)

where     ,     . This mathematical formulation of the update rule is
equivalent to the formulation of a ResNet layer. Therefore, the function      can be
considered a neural network block, where the      time variable indicates the     -th layer and    
corresponds to the skip connection present in this architecture.

3. Transformers as Muli-Particle Dynamic Systems

3.1. The transformer architecture

In the same way, we can identify a transformer network with some initial value problem and find the
corresponding dynamical system representing its layers. Recall the transformer consists of an
attention layer 3 and a feed-forward layer 4:

(3)

Φt : ϕ(t, ⋅)
ξx(t) = ϕ(⋅,x)

ϕ

{Φt} x(t) := ξx0
(t) ẋ(t) = f(x(t))

x(0) = x0 f(x) = d
dt

∣t=0 = Φt(x)

fi
xi i = 1, ...,n

{
dx
dt = f(t,x), t > t0

x(t0) = w

x : [t0, ∞) → Xn w ∈ Xn t0

T

L γ = (T − t0)/L
x(tl+1)−x(li)

tl+1−tl
≈ f(tl,x(tl))

x(T ) x0 = x(t0) xl+1 = x(tl+1)

xl+1 = xl + γf(tl,xl)

l = {0, ...,L − 1} tl = t0 + γl

γf(tl,xl)
tl l xl

Attl(xl, i) = ∑N
j=1 Softmax(β⟨Qlxl,i,Klxl,j⟩)Vlxl,j
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(4)

The attention layer outputs a linear combination of the system particles, depending on the query  
 , key    , value     matrices, their scalar product, and the temperature value    . The feed-forward

layer outputs the non-linear transformation of the particle     according to the matrices    ,
the vectors    , and the non-linear function    .

3.2. Dynamical system formulation

The introduction of dynamical system notation into the transformer problem was first done in [7],
modeling the multi-headed self-attention layer as the diffusion term and the feed-forward network as
the convection term. This MPDS can be approximated using the Lie-Trotter splitting scheme by the
iterative solving of the diffusion and the convection ODEs. Nevertheless, this formulation is still
very complex to be analyzed analytically.

3.3. Simplification of the problem

To perform a deeper mathematical analysis, [5] relaxes the typical experimental formulation of the
transformer and focuses solely on a simplified version of the attention mechanism (3). The
simplified problem is the following:

Each particle lies in the unit sphere    . Therefore, after the attention mechanism, the
particle is normalized again into the sphere. To study the evolution of a particle position over
non-linear manifolds such as the sphere, where we do not have a notion of "sum" or
"difference," we rely on the concept of the tangent bundle. The change of position will then be
measured using infinitesimal displacements on the point's tangent hyperplane. This is
empirically attained by projecting the attention output into the tangent hyperplane at the
particle's position, using    ,    .
The attention parameters: query    , key    , and value     are considered constant across
time (i.e., layers) and equal to the identity unless stated otherwise. Therefore, the problem
dynamics follow:

(5)

To avoid the asymmetry introduced by the denominator in (5) they also study a variant of the
attention mechanism normalized by a factor of    , which is also equivalent to studying the
case    . This other formulation is:

(6)

With these relaxations, the main focus of the paper is to study the evolution of the systems (5) and
(6). This study gives us insights into the following questions: what is, mathematically, the attention
mechanism? Is attention guaranteed to converge? If so, is this method deterministic?

FFNl(xl,i) = W 2
l σ(W 1

l xl,i + b1
l ) + b2

l

Q K V β

xi W 2,W 1

b2, b1 σ

X = S
d−1

P ⊥
xi

: Rd → S
d−1 y ↦ y − ⟨y,xi⟩xi

Q K V

ẋi(t) = P ⊥
xi(t)

(
∑n

j=1 e
β⟨xj,xi⟩xj

∑n
j=1 e

β⟨xj,xi⟩
)

n

β ≪ 1

ẋi(t) = P ⊥
xi(t)

(
∑n

j=1 e
β⟨xj,xi⟩xj

n )
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3.4. Formal result

Formally, the main result of the section holds for    , when the initial configuration is uniformly
sampled over the   . The paper states that under these conditions, the unique solution to the
Cauchy problem for (5) and (6) converges almost surely and at an exponential rate towards a single
particle    . This is, for any particles    

(7)

for some    . Not only this, but the same results hold for more general formulations of the
problem, where the key     and query     matrices are arbitrary     matrices.

This theorem follows as a direct corollary of a result they call the cone collapse. In this previous
lemma, they show that any solution to the Cauchy problems (5) and (6) converges and at an
exponential rate towards a single particle      if the initial configuration lies in an open
hemisphere. This indeed happens with probability one when    .

When      is fixed and      in high dimensional spaces, we can better model the entire
dynamics evolution with high probability. This has an intuitive explanation since, when   , any
two particles will likely be almost orthogonal. By concentration of measure, the evolution of this
system is comparable to the evolution of an orthonormal system, in which a single parameter
describes the dynamics. In this simplified model, where all different initial particles are orthogonal,
the unique solution to (5) and (6) preserves an equal angle between all different particles whose
value depends only on time     and the temperature of the attention mechanism    . Equivalently:

(8)

The most surprising result in this section is that the metastability and phase transition between
clustering and non-clustering regimes can also be modeled by this parameter of the system dynamics
    when   . Further work in this topic is done in [8].

4. Angular Dynamics Equation and the Kuramoto Model

We review some further equations and models mentioned in [5] in section 7.1 and section 7.2 on
Angular Dynamics Equation and Kuramoto Model .

4.1. Derivation of the Angular Dynamics Equation

In this section, based on [5] section 7.1, we focus on reviewing the dynamics of particles constrained
to the unit circle    ,i.e., the case when     specifically under the dynamics equation 6
(USA).This model, parametrized by angles and related to the celebrated Kuramoto model. Each
particle     can be represented by an angle     as follows [5]:  

where     and     are the standard basis vectors in    .
To derive the dynamics of     under equation 6 (USA), we proceed with the following steps as

we follow the section 7.1 in [5]:
Firstly, we assume we only discuss the dynamic equation 6 (USA) . To express this equation in

terms of    , we start by using the relation that    . we then take the time

d ≥ n

(Sd−1)n

x∗ ∈ S
d−1 i ∈ {1, ...,n}

∥xi(t) − x∗∥ ≤ Ce−λt

C,λ > 0
K Q d × d

x∗ ∈ S
d−1

d ≥ n

n d → ∞
d ≫ n

t β

∠(xi(t),xj(t)) = θβ(t)  i ≠ j

γβ(t) = cos(θβ(t)) d ≫ n

S 1 ⊂ R
2 d = 2

xi(t) ∈ S 1 θi(t) ∈ T = [0, 2π)

xi(t) = cos(θi(t))e1 + sin(θi(t))e2,

e1 = (1, 0) e2 = (0, 1) R
2

θi(t)

θi(t) cos(θi(t)) = ⟨xi(t), e1⟩
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derivative of both sides of the equation which yields the following equation:

Secondly, noting that     , we could substitute this relation and
rewrite it into the following equation:  

Thirdly, by using some elementary trigonometric relations, this finally leads us to define the
following expression of the equation:

Definition 1. The expression of Angular Dynamics under equation 6 is:

which governs the evolution of     in the presence of interactions weighted by     and the relative
angle between particles.

Remark 1. when    , the dynamics reduce to the well-known Kuramoto model which describes
the synchronization phenomenon in coupled oscillators.

 .

Remark 2.  Considering the dynamics in definition 1 for     , we observe that it can also be
written as a gradient flow with interaction energy    :

which reaches its maximum when all     align at a single fixed real value in    .

4.2. The Kuramoto Model and Its Genalizations

In this section, we reviewed some Kuramoto models and its genalizations in this section by
following section 7.2 in [8] As mentioned in the last section, when     , the dynamics in the
previous section simplify to a particular case of the Kuramoto model. In fact, the Kuramoto model
could be described in the following definition:

Definition 2.The Kuramoto model for oscillator     is given by:

where     is a coupling constant and     is the intrinsic frequency of oscillator    .

Remark 3.  In this model in the previous definition, for small     , oscillators do not synchronize
over long time. As     exceeds a critical threshold, some oscillators begin to synchronize. For very
large    , all oscillators eventually synchronize in the long term.

θ̇i(t) = − 1
n sin(θi(t)) ∑

n
j=1 e

β⟨xi(t),xj(t)⟩(⟨xj(t), e1⟩ − ⟨xi(t),xj(t)⟩⟨xi(t), e1⟩).

⟨xi(t),xj(t)⟩ = cos(θi(t) − θj(t))

θ̇i(t) = − 1
n sin(θi(t)) ∑

n
j=1 e

βcos(θi(t)−θj(t))[cos(θj(t)) − cos(θi(t) − θj(t)) cos(θi(t))].

θ̇i(t) = − 1
n ∑

n
j=1 e

β cos(θi(t)−θj(t)) sin(θi(t) − θj(t)),

θi(t) β

β = 0

θ̇i(t) = − 1
n ∑

n
j=1 sin(θi(t) − θj(t)).

β > 0
Eβ : T n → R≥0

Eβ(θ) = 1
2βn2 ∑

n
i=1 ∑

n
j=1 e

β cos(θi−θj),

θi T = [0, 2π)

β = 0

i

θ̇i(t) = ωi + K
n
∑n

j=1 sin(θj(t) − θi(t)),

K > 0 ωi ∈ T i

K

K

K
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Observation 1.

If all intrinsic frequencies     are equal to a real number like     in the previous definition, we can
actually shift and rewrite variables by setting   . This transforms the dynamics in
definition 2 into the following gradient flow form:

where the energy     is defined by:

Remark 4. This energy     is exactly maximized when all oscillators synchronize (i.e.,    
for some fixed     and for all     in    ), with equilibrium states occurring at the critical
points of    .

Definition 3. 
The Kuramoto model can also be generalized to include more general non-linear interaction

functions. In particular, an extension of the form can be written as following:

where      is a general non-linear function, which captures both the classic Kuramoto
model (when   ) in definition 2 and the model in definition 1 as specific cases.

Example 1. One example of such a generalization is when     , leading to the
interaction function:

where     denotes the modified Bessel function of the first kind. \end{example}

5. A practical transformer - Sumformer

5.1. Definition of Sumformer

A Sumformer is a sequence-to-sequence function    , defined for input sequence  
  as:

where     and     are learnable functions.

5.2. Approximation theorem of Sumformer

Let      be a continuous permutation-equivariant sequence-to-sequence function on compact sets,
defined as    . Then, for any    , there exists a Transformer     such that:

ωi ω

θi(t) → θi(t) − ωt

θ̇(t) = −n∇F(θ),

F : T n → R≥0

F(θ) = − K
2n2 ∑

n
i=1 ∑

n
j=1 cos(θi − θj).

F θi = θ∗

θ∗ ∈ T i 1, 2...,n
F

θ̇i(t) = ωi + K
n
∑n

j=1 h(θj(t) − θi(t)),

h : T → R

h(θ) = sin(θ)
h(θ) = eβ cos(θ)

hβ(θ) = eβ cos(θ) = ∑k∈Z Ik(β)eikθ,

Ik(β)

S : Rn×d → R
n×d

X = [x1, … ,xn]

Σ = ∑n
i=1 ϕ(xi),

S(X) = [ψ(x1, Σ), … ,ψ(xn, Σ)],

ϕ : Rd → R
d1 ψ : Rd × R

d1 → R
d

f

f : Rn×d → Rn×d ϵ > 0 T
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5.3. Proof

We aim to prove that a Transformer can approximate the Sumformer     and hence approximate any
equivariant function    . The proof consists of two main steps:

Step 1: Sumformer Approximation of    
1. Goal: Construct a Sumformer     that approximates    .
2. Constructing     using    : For each input sequence    , define

where      encodes information from each input      in a way that captures permutation-
equivariant properties. For example, using multisymmetric polynomials to approximate     ’s
behavior.

3. Defining     using    : Using    , define

where     combines each     with the aggregate information     to approximate    .
4. Approximation Error of     for    : Given a continuous    , we can choose     and     such that:

Step 2: Transformer Approximation of Sumformer
1. Input Encoding: For each input    , construct the sequence

2. Using Attention to Approximate    : Set the Transformer attention query and key matrices as:

so that each attention score is constant, allowing us to approximate the sum     by aggregating  
  terms across the sequence.

3. Output Generation Using Feed-Forward Layers: Use two feed-forward layers to approximate  
  for each    , ensuring that:

supX∈Rn×d∥f(X) − T (X)∥∞ < ϵ.

S

f

f

S f

Σ ϕ X = [x1, … ,xn]

Σ = ∑n
i=1 ϕ(xi),

ϕ(xi) xi

f

S(X) ψ Σ

S(X) = [ψ(x1, Σ), … ,ψ(xn, Σ)],

ψ(xi, Σ) xi Σ f(xi)
S f f ϕ ψ

supX∈Rn×d∥f(X) − S(X)∥∞ <
ϵ

2
.

xi

X ′ = [[x1,ϕ(x1)], … , [xn,ϕ(xn)]] ∈ R
n×(d+d1).

Σ

WQ = WK = [ ]⊤ ∈ R
(d+d1)×1,1&0& … &0

Σ
ϕ(xi)

ψ(xi, Σ) xi

supX∈Rn×d∥S(X) − T (X)∥∞ <
ϵ

2
.
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Step 3: Combined Approximation By combining these two steps, we have:

This completes the proof.

5.4. Conclusion

In summary, the multi-particle dynamical systems perspective provides a powerful lens to
understand transformers. By modeling self-attention as interacting particles, one can rigorously
study convergence, clustering, and stability, while also revealing parallels with classical systems
such as Kuramoto oscillators. This framework not only deepens theoretical insight but also opens
pathways for principled analysis and potential improvements in transformer architectures.
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