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Abstract.  Traditional credit risk models, focusing primarily on borrower-specific features,
often fail to capture the impact of macroeconomic fluctuations, leading to systemic
misjudgment during downturns. This paper proposes enhancing loan prediction models by
integrating an "economic sensor" – a module incorporating key macroeconomic indicators
(GDP growth, unemployment rate, interest rate, Housing Price Index, Industry Index)
processed via a temporal sliding window mechanism. We develop an economic shock
simulator for stress testing. Using a synthetically collected 5-year data set of loan
applications and macroeconomic conditions, we train Random Forest models. Results show
the enhanced model (individual and macro features) outperforms the baseline (individual
features only), with accuracy increasing from 83.13% to 85.21% and AUC from 0.8993 to
0.9217. The model demonstrates heightened sensitivity to economic shocks, evidenced by a
rightward shift in the predicted default probability distribution and an increase in the mean
predicted default rate from 21.5% to 31.8% post a simulated 20% housing price crash.
Crucially, it provides early warnings, identifying 2,873 clients (75% SMEs) with
significantly increased risk 3-6 months post-shock. This approach enables more robust,
economically-aware credit risk assessment.

Keywords: Credit risk modeling, Macroeconomic indicators, Machine learning, Credit risk
modeling, Predictive analytic

1. Introduction

Credit risk assessment is a cornerstone of financial stability, directly impacting lending decisions,
profitability, and systemic risks within the banking sector [1]. Traditional predictive models
predominantly use microeconomic or individual-level data points such as age, credit score, income,
existing debt levels, employment history, and loan amount [2]. While these factors are essential, this
approach often results in models being "nearsighted" in practical applications [3]. They are effective
at evaluating individual capabilities under stable or static economic conditions, yet struggle to adapt
to the dynamic macroeconomic environment. This blindness to broader economic currents, like
rising interest rates, increasing unemployment, declining GDP growth, or sector-specific downturns,
is a significant threat. During economic contraction periods, these models systematically
underestimate the default risk of even borrowers who were previously "creditworthy" but their
repayment ability is weakened by external macroeconomic shocks [4]. This can cause banks to
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misjudge collectively, leading to underestimated risk provisions, which might trigger or worsen
financial crises [5].

The 2008 Global Financial Crisis and the recent economic disruptions due to the COVID-19
pandemic have made a clear demonstration of the models' vulnerability to the lack of understanding
of systemic economic interdependencies [6,7]. So, there's a big need to improve the perceptual
abilities of AI-driven loan prediction models, so they can be metaphorically called an "economic
sensor." This sensor enables models to "see" and integrate real-time macroeconomic vital signs,
resulting in more robust and adaptable risk assessments.

This paper tackles this critical gap by suggesting and carrying out a framework to directly
integrate macroeconomic indicators into a standard loan prediction pipeline. Our main contribution
is the creation of an "economic sensor" module, which comprises three key components: 1) The
selection and integration of relevant macroeconomic indicators; 2) A temporal sliding window
mechanism that captures recent economic trends rather than just point-in-time data; and 3) An
economic shock simulator designed to test the model under extreme but plausible adverse scenarios.
We employ a highly advanced synthetic data set to validate our approach, quantitatively showcasing
improvements in performance and increased sensitivity to economic shocks, especially among
vulnerable groups such as small and medium enterprises (SMEs).

2. Data collection and methodology

To rigorously test our hypothesis while maintaining control over the data generating process and
ensuring the inclusion of specific economic shock events, we collected a comprehensive synthetic
data set mimicking five years (60 months) of historical data [8]. This data set encompasses both
individual loan applicant characteristics and contemporaneous macroeconomic conditions.

2.1. Macroeconomic data generation

For the months from January 2018 to December 2022, we gathered key macroeconomic time series.
GDP growth: By employing a sinusoidal function that incorporates a base trend, seasonal

components, and random noise, we simulate economic cycles.
Unemployment rate: It's modeled by an inverse correlation to GDP growth, accounting for lagged

effects.
Interest rate: It is generated by a policy rule that reacts to simulated inflation (which is correlated

with growth) and noise.
Housing price index and Industry index: These are created by geometric random walks with drift

and volatility parameters, to ensure positive values and have correlation with other economic
indicators.

In the first quarter of 2020, a significant economic shock was simulated, like mimicking the
initial phase of the COVID-19 pandemic, which caused a sharp, temporary drop in GDP growth,
Housing price index, and Industry index, and there was a quick increase in the unemployment rate.
This was followed by a recovery period. Figure 1 presents a visual representation of the simulated
trends, specifically highlighting the 2020 shock and the subsequent recovery path for each indicator.
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Figure 1. Macroeconomic indicators over time

2.2. Individual applicant data generation

For each month, 500 loan applications were generated synthetically. Features listed:
Demographic and Financial: Age (drawn from a truncated normal distribution), Income (log-

normal distribution, later log-transformed to income log), Credit Score (normal distribution, scaled),
Debt to Income Ratio (beta distribution), Employment Length (gamma distribution), Debt
(correlated with income, later log-transformed to debt log), Loan Amount (correlated with income
and debt, later log-transformed to loan amount log).

Target Variable: A binary flag that represents a default value. For each applicant, the probability
of default was calculated by employing a logistic function that integrates both individual
characteristics and the current macroeconomic indicators.

(1)

This ensured that the default data generating process aligns with real-world dynamics, where
macroeconomic conditions influence individual outcomes, and can interact with personal
characteristics, such as high debt-to-income ratios, which can exacerbate risks associated with rising
unemployment [9,10]. The binary default outcome was then sampled from a Bernoulli distribution
with this probability.

2.3. Feature engineering: the economic sensor module

The approach has a core innovation in the feature engineering phase, which builds the "economic
sensor".

Raw Macro Indicators Join: For each loan application record, the latest values of GDP growth,
unemployment rate, interest rate, housing price index, and industry index were combined, based on
the application month.

Temporal Sliding Window Features: We recognize that economic effects are usually lagged and
cumulative [11], so we calculated rolling statistics over a window of the previous 6 months for key
macro variables. This point-in-time economic data was transformed into features that represent
recent economic trends, which are more informative for prediction. Examples include:

1. GDP growth is rolling 6: The average GDP growth over the past 6 months.
2. Unemployment rate rolling 6: The average unemployment rate over the past six months.
3. Housing price index rolling 6: The average housing price index over the past six months.
4. Industry index rolling 6: The average II over the past 6 months.

Defaultprobability

= logistic(β0 + β1 ∙ age + β2 ∙ creditscore + … + γ1 ∙ GDPgrowth + γ2

∙unemploymentrate + … + δ1 ∙ GDPgrowth ∙ debttoincomeratio + …)
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5.  GDP growth change 6: The difference between the current month's value and the value 6
months prior (GDP growth t - 6).

6.  Unemployment rate change 6: The difference between unemployment rate (Unemployment
rate t - Unemployment rate t-6).

This process generated the features outlined in Figure 2, offering a contextualized and recent
economic history perspective for each loan application.

Figure 2. Feature importance ranking

2.4. Model training and evaluation strategy

We used a Random Forest classifier, which is chosen because it's robust, can handle complex non-
linear relationships and interactions, and is resistant to overfitting [12].

Models Trained:
Baseline Model: This model is trained solely based on the individual applicant's features, such as

age, credit score, income, debt to income ratio, employment duration, debt, and loan amount.
Enhanced Model (with Economic Sensor): This model is trained by adding the same individual

features, raw macroeconomic indicators, and engineered temporal sliding window features (like
GDP growth, Unemployment rate, etc.).

Temporal Train-Test Split: To realistically simulate model deployment in a time-series context,
we split data temporally [13]. Data from January 2018 to December 2021 (48 months) was used to
train models. The holdout test set comprises data from January 2022 to December 2022 (12 months),
which represents a future period that is completely unseen during model training or validation (like
hyperparameter tuning via cross-validation would only be done on the training period).

Performance Metrics: We tested models using standard metrics like Accuracy and Area Under the
Receiver Operating Characteristic Curve (AUC). Additionally, we analyzed the calibration curves
(Figure 3) to evaluate the reliability of the predicted default probabilities—how well they match the
actual observed default rates [14].
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Figure 3. Model calibration curve

2.5. Economic shock simulation framework

A key test of the economic sensor's value lies in its ability to respond to unexpected macroeconomic
downturns. We created a simulation framework, which aplies a strong negative shock to the
economic environment during the test period.

Shock Definition: We simulated an instant 20% decrease in the Housing Price Index (HPI) in
March 2022.

Ripple Effects: This primary shock was expected to have ripple effects on other correlated
macroeconomic indicators in the same month: GDP growth decreased by 2%, Unemployment rate
increased by 1.5%, and the Industry index dropped by 5%. Initially, the interest rate was held
constant for simplicity.

Feature Recalculation: A key point is that for all subsequent months in the test set (starting from
April 2022), all rolling window features (like GDP growth rolling 6, housing price index rolling 6)
were recalculated according to this new, shocking economic time series. This step is crucial because
it demonstrates how the model's sensor continuously affects the economic context it perceives.

Prediction and Comparison: The enhanced model's predictions were reprocessed for the test set
applications under this new shock economic scenario. Then we compared the distribution of
predicted default probabilities (Figure 4), the aggregate default rate (Figure 5), and the identification
of high-risk clients against the predictions made under the original, unshocked economic conditions.
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Figure 4. Impact of economic shock on default probability distribution

Figure 5. Economic shock on predicted default rate

3. Results and discussion

3.1. Model performance comparison

The addition of macroeconomic features via the economic sensor resulted in a uniform and
statistically significant enhancement in the model's performance on the temporal holdout test set,
which was evaluated in 2022.

The Baseline Model (only individual features) achieved an accuracy of 83.13% and an AUC of
0.893.

The Enhanced Model, which incorporates both individual and macro features, demonstrated a
higher accuracy of 85.21% and a higher Area Under the Curve (AUC) of 0.9217.

This indicates a 2.08% increase in accuracy and a 2.24% improvement in AUC. The increase in
AUC is a significant finding, as it directly quantifies the model's ability to distinguish between
clients who default and those who do not, thereby indicating a superior risk ranking [15]. The visual
representation in Figure 6 provides a clear illustration of the performance difference observed across
both metrics, attributed to the economic sensor.
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Moreover, Figure 3 shows that the predictions from the enhanced model (represented by one line)
more closely align with the ideal calibration line (dashed) than the baseline model, especially in the
mid-to-high probability ranges. This shows that the probabilities predicted by our improved model
are more accurate and trustworthy estimates of the actual default risk. Well-calibrated probabilities
are essential for risk-based pricing decisions, loss calculation, and capital allocation strategies [16].

Figure 6. Model performance comparison

3.2. Feature importance analysis

Figure 2 (Feature Importance Ranking) presents the relative importance of features, calculated using
the Random Forest algorithm (for example, based on mean decrease in Gini impurity), for the
enhanced model. The results are insightful.

Several engineered macroeconomic features, like GDP growth rolling 6 and industry index
rolling 6, are among the top predictors, offering empirical evidence that the model effectively
leverages the economic context provided by the sensor.

Traditional strong individual predictors such as debt-to-income ratio, credit score, and income log
are still very important, indicating that individual capacity is still key.

The model learns to combine micro and macro information for a more holistic assessment, which
is the central goal of this research, given that both individual and macro features are high on the list.

3.3. Impact of economic shock

The economic shock simulation effectively showcased the model's heightened sensitivity to
macroeconomic fluctuations, a capability that the baseline model is inherently lacking.

Shift in Probability Distribution: Figure 4 (Impact of Economic Shock on Default Probability
Distribution) depicts the kernel density estimates of the predicted default probabilities for the test set
population under the original economic conditions (like "Original Prediction") and post-shock
conditions (like "Post-Shock Prediction"). The entire distribution has shifted significantly to the
right post-shock, suggesting a substantial increase in perceived risk across the entire portfolio. The
distribution's mas moves from lower probability ranges (like 0.1 - 0.4) to higher probabilities, and
the density of predictions above 0.5 increases significantly.

Increase in Aggregate Risk: This distributional shift results in a significant alteration in the
aggregate portfolio risk. As depicted in Figure 5 (Economic Shock on Predicted Default Rate), the
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mean predicted default rate across all test applicants increased from 21.5% under baseline conditions
to 31.8% after a simulated housing crash, representing an increase of 10.3 percentage points. This
quantitatively shows that the model, via its economic sensor, effectively captures the systemic risk
increase caused by a major economic downturn.

3.4. Risk warning and temporal dynamics

A crucial practical application involves proactively identifying clients whose risk profile has
deteriorated the most significantly following a shock. We defined "risk-significant increase" as an
absolute increase in predicted default probability, which is greater than 10 percentage points after
the shock.

Our analysis found 2,873 clients in the test cohort, whose risk classification was significantly
worsened due to the shift in economic outlook.

Figure 7 presents the monthly count of high-risk clients across the entire test year (2022). It
demonstrates a significant increase immediately following the simulated shock event in March, with
the count reaching its peak in the following months, such as May to June 2022. This temporal
pattern confirms that the model can serve as an early warning system, identifying vulnerabilities that
arise within a 3-6 month period following an economic downturn. This lag is in line with the usual
time it takes for macroeconomic distress to become financial difficulties for households and
businesses [17].

Figure 7. Risk increase trend enhanced

3.5. SME risk analysis

Small and Medium Enterprises (SMEs) are frequently sen as more vulnerable to economic shocks
because they have smaller capital buffers, fewer diversified revenue streams, and higher operational
fragility [18]. Our model supports this increased vulnerability.

Among the 2,873 clients identified with significantly increased risk, a disproportionate share –
2,150 (75%) – were classified as SME owners (based on an income threshold, e.g., annual income <
$50,000).

Figure 8 offers a comprehensive examination of this crucial subgroup. It shows the link between
the absolute increase in predicted default probability and the debt-to-income ratio for these SME
owners. The plot may suggest a positive correlation, suggesting that SMEs with greater pre-existing
debt burdens faced a higher risk increase following a shock. The size of the points could represent
another variable, like loan amount, thereby adding another dimension to the analysis. The average
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increase in default probability among these SME owners was 16.7%, which is significantly higher
than the average across all clients.

This targeted identification is likely the most crucial practical advantage of the economic sensor.
It allows lenders to actively interact with the most vulnerable borrowers, providing restructuring
guidance, temporary financial relief, or other supportive actions before defaults are expected to
occur, thereby safeguarding both the lender's interests and the financial stability of the institution.

Figure 8. SME risk analysis

4. Conclusion

This research successfully shows that an "economic sensor" has been designed, implemented, and
validated for AI-driven loan prediction models. By shifting focus from individual borrower
characteristics to a broader economic environment, and integrating macroeconomic indicators
dynamically updated via temporal sliding window, we develop a model that captures the evolving
economic context in which borrowers operate.

The findings are clear: the enhanced model performs better in accuracy, discriminative power
(AUC), and calibration reliability compared to the traditional baseline. It has a critical ability to
sense and respond to economic adversity. By performing shock simulations, we demonstrated that
the system effectively recalibrates risk assessments upward, responding to significant economic
downturns, and accurately identifies a surge in high-risk clients, especially among vulnerable small
and medium-sized enterprises, with a lead time of 3 to 6 months. Feature importance analysis
showed that the model effectively uses the provided economic context.

This approach represents a substantial advancement in the development of AI systems aimed at
finance, towards a more robust, responsible, and economically informed approach. It reduces the
issue of collective misjudgment during downturns and makes the model a dynamic early warning
system. Future research could investigate dep learning architectures, such as Long Short-Term
Memory (LSTM), to capture more intricate temporal dependencies in economic data. By integrating
a comprehensive set of global economic indicators and text-based news sentiment analysis, the
framework can be applied in real-time lending platforms to provide live validation and operational
insights.
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