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Abstract. This study focuses on a comparative study of machine learning methods on offline
weather forecasting with short lookback windows and limited computational resources.
Using 90 days of single-station GSOD inputs, models predict 15-day horizons for
temperature, precipitation, wind speed, and visibility. Evaluation with Nash–Sutcliffe
efficiency, RMSE, and inference time shows that Linear Regression is a surprisingly strong
and stable baseline, excelling in wind speed and remaining competitive across variables.
Transformer models perform best for temperature by capturing long-range dependencies,
while sequence-to-sequence GRUs outperform others on precipitation and visibility. In
contrast, XGBoost and persistence baselines consistently underperform in this constrained
setup. In inference time, LR outperform all other methods due to its simplicity. The results
indicate that simple linear models can excel in this scenario compare to deep learning
approaches, while specialized neural architectures provide targeted gains, suggesting a
combination of models could be the most effective for practical low-resource forecasting.
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1. Introduction

1.1. Background

From ancient times to today, human cannot stop predicting what will the day be like for tomorrow.
Methods include observing the cloud, putting salt in the camp fire, using pattern of empirical
weather data, or training complex neural networks. These methods yield result forecasts that serve as
important indicator with a wide range of downstream applications from choice of personal outfits,
economic decisions, policy making, to natural disaster warning.

With the development of weather forecast techniques, weather forecast services with high
precision and high resolution are available through the Internet. Users are able to receive features
like temperature, precipitation, wind speed, thunder with complete GUI on mobile phones and
personal computers. However, there are situations where internet might not be accessible or weather
reports need to be forecasted locally. For example, volunteers preparing for possible flood during the
internet outage following a severe earthquake, researchers in remote stations where the internet
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service provider is not always reliable, or a part of the offline failsafe serve an online weather
forecasting service.

Such an offline method will require an acceptable processing time for quick forecasting and will
limit input of data to a relatively short lookback window with only one source of data for isolated
applications.

1.2. Current research

Chhetri et al. developed a BLSTM-GRU hybrid model that leverages bidirectional memory and
gated recurrent units to improve monthly rainfall prediction in Bhutan, achieving lower mean square
error than standalone deep learning models [1]. FuXi, proposed by Chen et al., is a cascaded
machine learning system that extends skillful global weather forecasts up to 15 days, rivaling the
ECMWF ensemble by reducing accumulated errors through multi-stage learning [2]. An attention-
based sequence-to-sequence network from Setiawan et al. has been applied to indoor climate
prediction, capturing temporal dependencies while improving accuracy through attention
mechanisms [3].

Moreover, a transformer with shifted window cross-attention developed by Bojesomo et al.
efficiently models spatiotemporal interactions in weather data, offering competitive nowcasting
performance with fewer parameters [4]. The Bagging–XGBoost ensemble has been used for extreme
weather identification and short-term load forecasting, enhancing grid stability by reducing error
rates under peak load conditions [5]. LSTM networks have proven effective for short-term solar
irradiance forecasting under complicated weather, outperforming traditional RNNs by mitigating
gradient issues and better handling cloudy-day variability [6, 7].

1.3. Aim of the study

One might notice from the above research that they focus heavily on pre-trained complex models
that requires numerous sensor inputs that could hinder usage like offline emergency or individual
forecasting, which are limited by sole sensor input, slow computer and short lookback window.

To determine the performance of these weather forecasting methods in offline isolated situation, a
comparative analysis is needed using a unified method with multiple metrics for a comparison
across methods.

2. Methodology

2.1. Data preparation

For the training, validation, and evaluation, GSOD (Global Summary of the Day) from NOAA
(National Oceanic and Atmospheric Administration) is selected since it provides daily weather
information collected from ground weather stations. This data structure fits the target scenario of
using an isolated sensor for forecasting. After removing flags, and station names, there are 7 relevant
weather features and 4 space-time related stationary data selected. The sensor data include:
temperature, precipitation, wind speed, dew point, station pressure, sea level pressure, and visibility.
The stationary features are date, latitude, longitude, and elevation. The total cleaned dataset consists
of 40 stations with data from 2000 to 2010.

For missing values, since total number of observations with not available value is less than 0.1
percent of the sample, all NA values are replaced using the mean value of the same station of the
year. To avoid possible impact from the different unit of measure across feature, for example 10^1
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for temperature but 10^3 for pressure, and later PCA (Principal Component Analysis) for
dimensional reduction, all features are normalized compare to the range of the total sample space.

2.2. Training

The scaled input for every model is consisted of 90 days of 7 weather features and 4 static features.
The output is horizon with 15 days of 4 weather features include temperature, precipitation,
visibility, and wind speed. The training/evaluation set is divided to 9:1. All deep learning models are
trained with the following common hyperparameters as shown in Table 1.

Table 1. Hyperparameter used for deep learning models

Parameters Value
Batch size 128

Epochs 50
Patience 8

Lr 1e-3
Seed 42

To train all deep learning model, a Python 3.12 module in is called. The module prepared the
dataset and used the above hyperparameters to call different methods of trainers. Also, to prevent
overfitting, method of early stopping is used with patience 8 with validation set. In event of
validation MSE not improving for 8 epochs, the training process stops and yield the model with
lowest validation MSE. For evaluation, a similar module as the training module is called and
evaluate the models saved after training. The evaluation module uses sliding windows with the same
IO as in training and calculate the result metric for performance comparison. The specific setup for
each Deep Learning methods is outlined in provided code.

The test on the performance of traditional Machine learning methods involves three renowned
methods. Persistence Model, where the forecast result is the same as the day before, is used as a
baseline model here. Linear Regression is included for its simplicity and its ability to capture linear
relation. The other one is XGBoost, a tree-based method that is excellent is accuracy and fast in
speed. All of the traditional methods used PCA for dimensional reduction with more than 90% of
explained variance given the fact that 90*7+4 inputs is very computational heavy for methods like
XGBoost. Moreover, all traditional methods are trained for each of 4 result features independently
for three horizons: Day 1, 7 and 15.

2.3. Metrics

The performance metric is consisted of Nash–Sutcliffe, an R^2-like skill that measures how well
model predictions match observed data, relative to the mean of the observations

(1)

Root Mean Square Error (RMSE) is also used to quantify the average magnitude of errors
between observed and predicted values [8]. It is useful when large errors are particularly
undesirable, giving higher weight to larger deviations.

Skill  =  1 − MSE
Var(ytrue)
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(2)

Evaluating with NSE and RMSE is complementary: NSE measures errors against climatology
(the station mean), while RMSE for to absolute magnitude. For low-variance settings, NSE is
sensitive to small error changes; for skewed targets like precipitation, RMSE can be dominated by
rare larger events. Reporting both, per variable and horizon, was therefore suitable.

Since the application scenario demands limitation on computational power, the total time of
making forecasting is also measured to compare the cost of inferencing using pre-trained models.

3. Results

3.1. Overview

Figure 1. Skill heatmap

As shown in Figure 1, the above is the heatmap showing the comparative overall skill of models.
It shows the naïve Persistence performs the worse overall with expected failure as the horizon
increases. The XGBoost also performed poorly compare to the daily average. Models with
significant positive skill compare to the average are LR, S2SGRU, and Transformer. The statistics in
each block is calculated by comparing the mean of average skill of all features for each model each
day and the average skill of features for any model.

RMSE = √ 1
n ∑

n
i=1 (ytrue − yest)

2



Proceedings	of	CONF-APMM	2025	Symposium:	Simulation	and	Theory	of	Differential-Integral	Equation	in	Applied	Physics
DOI:	10.54254/2753-8818/2025.DL27105

37

3.2. Performance per feature

Figure 2. Average RMSE of temperature

For temperature (TEMP), as shown in Figure 2, the best model is Transformer with RMSE
around 7.2. Persistence, LR, and GRU are just behind in the same narrow range. XGB and LSTM
are modestly worse at about 7.4–7.6. S2SGRU is a bit weaker here at 7.7, and both TCN and MLP
underperform, with MLP the worst at about 9.0.

Figure 3. Average RMSE of precipitation

From Figure 3, the best performance for precipitation is from S2SGRU, with RMSE near 20, and
GRU closing behind. A middle cluster of models consist of LR, MLP, and LSTM is within the 21–
22 range, with Transformer and TCN similar but slightly weaker. The poorest models here are XGB,
which increased toward 23, and Persistence, which collapses entirely at about 26. This fits with the
earlier conclusion that S2SGRU excels on precipitation while Persistence is not viable.

Figure 4. Average RMSE for wind speed



Proceedings	of	CONF-APMM	2025	Symposium:	Simulation	and	Theory	of	Differential-Integral	Equation	in	Applied	Physics
DOI:	10.54254/2753-8818/2025.DL27105

38

For wind speed (WDSP), the lowest RMSE in Figure 4 comes from LR, followed very closely by
Transformer, S2SGRU, and GRU. All of them stay around the 3.2–3.3 range. A second tier includes
TCN, MLP, and, which are slightly higher around 3.5–3.6. The weakest models are LSTM,
Persistence and XGBoost, which rise to 3.9 and above 4.1 respectively. Thus, LR is the most reliable
choice for WDSP, and XGBoost perform poorly.

Figure 5. Average RMSE for visibility

As in Figure 5, the lowest overall RMSE of visibility is achieved by S2SGRU, GRU, and LR, all
clustered around 4.9–5.0. Transformer follows closely at about 5.0, then LSTM and MLP a bit
higher near 5.2–5.3. TCN and XGB are worse with around 5.8. Persistence is again the worst, above
6.3. This shows S2SGRU is comparatively effective for visibility, with LR and GRU nearly tied.

3.3. Performance per day

Figure 6. Skill of temperature

As for skill, Figure 6 shows that in temperature, all models lose skill as the forecast horizon
increases, which is expected in time series forecasting. Persistence model starts the highest (around
0.96), because at short horizons the naïve assumption works very well. S2SGRU, Transformer, LR
also begin very strong (>0.92). In stability, GRU, LR, Transformer, and XGB decline gradually,
which suggest they are more reliable over longer horizons. S2SGRU and PERSIST drop sharply,
suggesting strong in very short-term, poor in medium/long-term. Also note that LSTM declines
steadily but performs worse than GRU, and MLP hovers at the bottom throughout (~0.84–0.86),
showing weak performance overall.
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Figure 7. Skill of precipitation

Clearly forecasting PRCP is harder than TEMP with the skills on the graph is now ranged from
0.3 to 0.55, compare to above 0.82 for TEMP, as demonstrated in Figure 7. Most of the models
perform consistently throughout the horizon from skill 0.4 to 0.55 with S2SGRU being the best
among the models. The XGBoost still perform the badly but not as terrible as the Persistence model
that holds skill less than 0.1 in day 15.

Figure 8. Skill of wind speed

As for wind speed, LR in Figure 8 is the clearly with best performance and the most stable across
horizons. For start to mid-horizon, Transformer is also strong around 0.45, close to LR. S2SGRU,
GRU start very high around 0.5 but collapse by Day 3–15 to around 0.35. Note that performance of
MLP gradually improve over horizon. LSTM struggles, peaking at around 0.25 then collapsing on
Day 15 to around 0.03. PERSIST and XGB is not performing well and Persistence even shows sign
of negative skill at day 15.
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Figure 9. Skill of visibility

For visibility, S2SGRU, GRU, LR, TRANSFORMER in Figure 9 all stay strong around 0.78 to
0.80 across horizons. LR is noticeably the most stable one that barely declines. LSTM, MLP settle
around 0.76, slightly below the top models. TCN and XGBoost stays around 0.74 lower than other
models. Persistence collapses badly from 0.75 to around 0.64.

3.4. Performance in speed

Table 2 shows the measurement of the inference process, which is taken with average of three trial.
The time does not contain the preprocessing of data.

As shown in the table, the LR (Linear Regression) shows the least inference time. MLP and GRU
maintained about 500 to 600 milliseconds, while most of other methods exceed 1000 milliseconds.

Table 2. Average performance of inference time

Model Time (milliseconds)
LR 6.9883

MLP 532.2866
GRU 687.8601
TCN 1065.7005

LSTM 1075.6670
S2SGRU 1292.3496

XGB 1408.3199
Transformer 1671.8236

Therefore, looking across all variables, LR is remarkably consistent. It has top or near-top results
in every case, and stands out especially for wind speed. S2SGRU is a standout for precipitation and
visibility, but less competitive for temperature. GRU is a strong all-rounder, competitive across
PRCP, VISIB, and WDSP, though slightly behind Transformer for TEMP. Transformer itself is the
best for temperature and very solid for wind speed, but more mid-range for precipitation and
visibility. MLP and TCN are generally mediocre. XGB consistently struggles and shows higher
RMSE values across the board. Lastly, Persistence only works acceptably for very short-term
temperature but fails on other variables and especially poor with horizon larger than 1.
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4. Discussion

The study has compared traditional and deep learning approaches for 15-day, multi-target
forecasting from single-station daily observations (GSOD). Several consistent patterns emerge
across variables and horizons.

Firstly, Transformer and S2S/GRU architectures, which features in model temporal dependencies,
yield clear gains over naïve and tree-based baselines. Transformer is strongest for temperature, a
highly autocorrelated (as shown in day 1 persistence), smooth signal for which long-range attention
is advantageous. S2SGRU excelled on precipitation and visibility, variables that benefit from
regime/context modeling and short-to-medium memory. However, gains were not universal: for
wind speed, a simple linear regression (LR) matched or slightly outperformed the deep models,
suggesting that WDSP dynamics in these data are close to linear given the chosen inputs and 90-day
context window.

Secondly, LR is a surprisingly strong and stable performer across variables and horizons, often
top-2 and the best on wind speed. In contrast, XGBoost consistently lack such performance.
Although PCA is friendly to LR by compressing the inputs while keeping over 90 percent of
variance, and significantly cut the training time of the trees, it could degrade tree models by mixing
features, especially for the temporal structure, into dense linear components that are less separable
via splits due to the structure of trees.

Thirdly, all models lose skill with increasing horizon. This is an expected outcome for multi-step
forecasts, but the slope of degradation varies. Transformer and LR decline gradually for temperature,
indicating more reliable longer-range behavior. S2SGRU shows sharper drops on some targets like
precipitation beyond a few days, consistent with sequence-to-sequence models that capture short-
term context very well but may overfit to short-horizon dynamics or suffer from exposure to
distributional shift across the 15-step outputs.

5. Conclusion

Using 90 days of station-local GSOD inputs to forecast 15 days across four targets features, the
results are:

1. Linear Regression is a strong, low-latency baseline, winning wind speed and tying near the top
for visibility, while remaining competitive for temperature and precipitation.

2.  Transformer achieves the best temperature skill and maintains accuracy with horizon,
consistent with its strength in long-range dependencies.

3. S2SGRU is best for precipitation and visibility, leveraging sequence modeling to capture short-
to-mid-range regimes, though its skill declines steeply at longer horizons on temperature.

4. XGBoost underperforms in this setup, likely due to PCA compression (thought PCA only saves
above 90% of explained variance) and lack of temporal inductive bias—and persistence is only
viable for Day-1 temperature.

For an application constrained by compute, a variable-aware portfolio is recommended: LR for
wind speed (and often visibility), Transformer or GRU for temperature as budget allows, and
S2SGRU for precipitation.

Future work could focus on uncertainty quantification, combination of models, exogenous
predictors, and other station-robust evaluation. These steps are likely to yield additional, deployment
ready improvements without abandoning the isolated-sensor constraint.
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