DNA Replication and the Transmission of Genetic Information: A Molecular Mechanism Perspective
Research Article
Open Access
CC BY

DNA Replication and the Transmission of Genetic Information: A Molecular Mechanism Perspective

Ziying Wang 1*
1 Nanjing Foreign Language School
*Corresponding author: Listen_sept05@163.com
Published on 24 September 2025
Journal Cover
TNS Vol.138
ISSN (Print): 2753-8826
ISSN (Online): 2753-8818
ISBN (Print): 978-1-80590-381-9
ISBN (Online): 978-1-80590-382-6
Download Cover

Abstract

DNA replication, as the foundation of genetic information transmission and the continuity of life, relies on high fidelity and dynamic regulatory mechanisms that are central to maintaining genome stability. Through literature analysis, this review systematically summarizes the core molecular mechanisms of DNA replication initiation, elongation, proofreading, and repair, while comparing the commonalities and differences between prokaryotic and eukaryotic systems. Comparative analysis demonstrates that while prokaryotic and eukaryotic DNA replication share conserved high-fidelity principles, they exhibit fundamental mechanistic divergences. Advances in technologies such as cryo-electron microscopy have uncovered the structure and dynamics of the replication machinery and its coupling with epigenetic regulation. Future research should employ integrative multi-omics approaches to decipher the spatiotemporal regulation of replication, facilitating therapeutic interventions for replication-associated pathologies including cancer.

Keywords:

DNA replication, origin recognition, replication and assembly, fidelity mechanisms, replication licensing control

View PDF
Wang,Z. (2025). DNA Replication and the Transmission of Genetic Information: A Molecular Mechanism Perspective. Theoretical and Natural Science,138,19-24.

References

[1]. Yuan, Z., & Li, H. (2020). Molecular mechanisms of eukaryotic origin initiation, replication fork progression, and chromatin maintenance. Biochemical Journal, 477(18), 3499-3525.

[2]. Lee, S. J., & Richardson, C. C. (2011). Choreography of bacteriophage T7 DNA replication. Current opinion in chemical biology, 15(5), 580-586.

[3]. Beattie, T. R., & Reyes-Lamothe, R. (2015). A replisome’s journey through the bacterial chromosome. Frontiers in microbiology, 6, 562.

[4]. Chastain, P. D., Makhov, A. M., Nossal, N. G., & Griffith, J. (2003). Architecture of the replication complex and DNA loops at the fork generated by the bacteriophage t4 proteins. Journal of Biological Chemistry, 278(23), 21276-21285.

[5]. Chen, D., Yue, H., Spiering, M. M., & Benkovic, S. J. (2013). Insights into Okazaki fragment synthesis by the T4 replisome: the fate of lagging-strand holoenzyme components and their influence on Okazaki fragment size. Journal of Biological Chemistry, 288(29), 20807-20816.

[6]. St Charles, J. A., Liberti, S. E., Williams, J. S., Lujan, S. A., & Kunkel, T. A. (2015). Quantifying the contributions of base selectivity, proofreading and mismatch repair to nuclear DNA replication in Saccharomyces cerevisiae. DNA repair, 31, 41-51.

[7]. Li, G. M. (2008). Mechanisms and functions of DNA mismatch repair. Cell research, 18(1), 85-98.

[8]. Bębenek, A., & Ziuzia-Graczyk, I. (2018). Fidelity of DNA replication—a matter of proofreading. Current genetics, 64(5), 985-996.

[9]. Fernandez-Leiro, R., Conrad, J., Scheres, S. H., & Lamers, M. H. (2015). cryo-EM structures of the E. coli replicative DNA polymerase reveal its dynamic interactions with the DNA sliding clamp, exonuclease and τ. Elife, 4, e11134.

[10]. Burgers, P. M. (1998). Eukaryotic DNA polymerases in DNA replication and DNA repair. Chromosoma, 107(4), 218-227

[11]. Lodish, H. F. (2008). Molecular cell biology. Macmillan.

[12]. Williams, J. S., Lujan, S. A., & Kunkel, T. A. (2016). Processing ribonucleotides incorporated during eukaryotic DNA replication. Nature reviews Molecular cell biology, 17(6), 350-363.

[13]. Liu, B., Hu, J., Wang, J., & Kong, D. (2017). Direct visualization of RNA-DNA primer removal from Okazaki fragments provides support for flap cleavage and exonucleolytic pathways in eukaryotic cells. Journal of Biological Chemistry, 292(12), 4777-4788.

[14]. Raducanu, V. S., Tehseen, M., Al-Amodi, A., Joudeh, L. I., De Biasio, A., & Hamdan, S. M. (2022). Mechanistic investigation of human maturation of Okazaki fragments reveals slow kinetics. Nature Communications, 13(1), 6973.

[15]. Leonard, A. C., & Grimwade, J. E. (2011). Regulation of DnaA assembly and activity: taking directions from the genome. Annual review of microbiology, 65(1), 19-35.

[16]. Reuter, L. M., Khadayate, S. P., Mossler, A., Liebl, K., Faull, S. V., Karimi, M. M., & Speck, C. (2024). MCM2-7 loading-dependent ORC release ensures genome-wide origin licensing. Nature Communications, 15(1), 7306.

[17]. Schmidt, J. M., Yang, R., Kumar, A., Hunker, O., Seebacher, J., & Bleichert, F. (2022). A mechanism of origin licensing control through autoinhibition of S. cerevisiae ORC· DNA· Cdc6. Nature Communications, 13(1), 1059.

[18]. Kadyrova, L. Y., Rodriges Blanko, E., & Kadyrov, F. A. (2013). Human CAF-1-dependent nucleosome assembly in a defined system. Cell cycle, 12(20), 3286-3297.

[19]. Whitehouse, I., & Smith, D. J. (2013). Chromatin dynamics at the replication fork: there's more to life than histones. Current opinion in genetics & development, 23(2), 140-146.

[20]. Rzechorzek, N. J., Hardwick, S. W., Jatikusumo, V. A., Chirgadze, D. Y., & Pellegrini, L. (2020). CryoEM structures of human CMG–ATPγS–DNA and CMG–AND-1 complexes. Nucleic acids research, 48(12), 6980-6995.

[21]. Wollman, A. J., Miller, H., Zhou, Z., & Leake, M. C. (2015). Probing DNA interactions with proteins using a single-molecule toolbox: inside the cell, in a test tube and in a computer. Biochemical Society Transactions, 43(2), 139-145.

Cite this article

Wang,Z. (2025). DNA Replication and the Transmission of Genetic Information: A Molecular Mechanism Perspective. Theoretical and Natural Science,138,19-24.

Data availability

The datasets used and/or analyzed during the current study will be available from the authors upon reasonable request.

About volume

Volume title: Proceedings of ICBioMed 2025 Symposium: Computational Modelling and Simulation for Biology and Medicine

ISBN: 978-1-80590-381-9(Print) / 978-1-80590-382-6(Online)
Editor: Alan Wang, Roman Bauer
Conference date: 19 October 2025
Series: Theoretical and Natural Science
Volume number: Vol.138
ISSN: 2753-8818(Print) / 2753-8826(Online)