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Abstract: Object detection involves the precise and efficient identification and localization of 

multiple predefined object categories within images. With the advent of deep learning, both 

the accuracy and efficiency of object detection have significantly improved. Nevertheless, 

challenges remain in optimizing the performance of mainstream detection algorithms, 

improving the accuracy of small object detection, enabling multi-class detection, and 

developing lightweight models. In response to these challenges, this paper provides a 

comprehensive literature review, analyzing approaches to enhance mainstream object 

detection by exploring advancements in backbone networks, expanding the visual receptive 

field, feature fusion, and various training strategies. We also evaluate the performance of 

leading detection models across established datasets, identifying current limitations and 

proposing future research directions. These directions include enhancing small object 

representation in datasets, enriching semantic information, and improving model 

interpretability. Small object detection remains a critical focus in computer vision, and we 

anticipate the continued development of algorithms with higher accuracy and efficiency. 
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1. Introduction 

Object detection is a fundamental task in computer vision that involves both identifying and localizing 

objects of interest within an image or video. It can be understood as the combination of two subtasks: 

localization, which determines the precise position of objects within an image, and classification, 

which assigns each detected object to a specific category. 

Over the years, numerous approaches to object detection have been developed, evolving from 

traditional methods based on handcrafted features—such as Histogram of Oriented Gradients (HOG) 

and Haar cascades—to modern deep learning techniques powered by convolutional neural networks 

(CNNs). State-of-the-art models, including YOLO (You Only Look Once), Faster R-CNN (Region-

Based Convolutional Neural Networks), and SSD (Single Shot Multibox Detector), have 

revolutionized the field by achieving high accuracy while supporting real-time processing. 

Among the various challenges in object detection, small object detection has emerged as a critical 

subfield. Small objects are defined in two primary ways: (1) a relative size criterion, where the object's 
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size is less than 10% of the original image, and (2) an absolute size criterion, as exemplified by the 

MS COCO dataset, where a small object is defined as one with a resolution of less than 32x32 pixels. 

Detecting small objects is particularly challenging due to their limited resolution and subtle visual 

features. On the MS COCO dataset, for instance, detection accuracy for large objects is typically 

twice as high as that for small objects. 

With the increasing demand for applications such as autonomous driving, medical imaging, and 

surveillance, the accurate detection of small objects has gained substantial attention. Addressing these 

challenges is crucial for advancing object detection models to meet the needs of real-world 

applications where small objects play a significant role. 

The remainder of this paper is organized as follows: Section 2 reviews recent advancements in 

small object detection algorithms, focusing on four key areas: feature fusion, backbone networks, 

expanding the receptive field, and model training strategies. Section 3 evaluates the performance of 

several leading object detection models on widely recognized datasets. Finally, Section 4 discusses 

current challenges and outlines future research directions. 

2. Methods 

2.1. Feature Fusion 

The rapid advancements in deep learning and computational power have significantly underscored 

the advantages of feature fusion in object detection, particularly for small object detection. Feature 

fusion involves combining features from different layers of a neural network, or even across multiple 

networks, to capture more detailed information about objects. This approach enhances detection 

accuracy, especially for small objects, by integrating both high-level semantic information and low-

level spatial details. Among the various methods, deep learning-based feature fusion techniques have 

shown the greatest promise. 

Traditional object detection methods typically processed single-layer features, which overlooked 

the rich high-level semantic information present in deeper layers—crucial for detecting objects of 

varying sizes. In particular, small objects often become lost in low-resolution feature maps, making 

their detection challenging. Feature Pyramid Networks (FPN) introduced a multi-scale feature fusion 

approach, combining deep-layer semantic information with shallow-layer spatial details. This 

architecture significantly improved small object detection accuracy on datasets like MS COCO, 

achieving a precision of 35.8%. FPN's architecture has since been widely adopted in modern detection 

algorithms, such as YOLOv3. 

Despite the success of FPN, its manually designed architecture may limit its feature fusion 

efficiency. To address this, Ghiasi et al. [1] introduced NAS-FPN, which leverages Neural 

Architecture Search (NAS) technology [2] to automatically discover optimal feature pyramid 

architectures. Using reinforcement learning, a controller was trained to explore a vast search space of 

cross-scale connections, iteratively refining the architecture based on detection performance as a 

reward signal. Combined with backbone models in the RetinaNet framework [3], NAS-FPN achieved 

remarkable results, with detection accuracy reaching 48.3% on the MS COCO dataset. 

While FPN primarily focuses on multi-scale feature fusion by merging high-level semantic 

features with low-level details, Detection with Enriched Semantics (DES) takes this concept further. 

DES enhances both low- and high-level features, incorporating a segmentation module to enrich 

semantic content in lower layers, and a global activation module to strengthen higher-level features. 

This method has notably improved performance, achieving an 84.3% accuracy on the PASCAL VOC 

2007 dataset. 
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2.2. Backbone Networks 

Many state-of-the-art object detection models, such as VGG-16, GoogLeNet, ResNet-50, and 

ResNet-101, rely on backbone networks that are often pre-trained on large datasets like ImageNet. 

These networks primarily extract features used for classification and segmentation. However, 

traditional backbones struggle to detect small objects, as they tend to generate low-resolution 

representations that may cause small objects to be misclassified or overlooked, thereby reducing 

overall detection performance. 

To address these limitations, newer backbone networks, such as DetNet and DenseNet, have been 

developed to improve small object detection. DetNet, introduced by Li et al. [4], builds on ResNet-

50 by modifying the later stages to maintain feature maps at a scale of 1/16 of the original image, as 

opposed to ResNet-50's 1/32. This ensures that small objects remain detectable, while the network 

retains more detailed edge information. Additionally, DetNet reduces computational cost by 

maintaining the same number of channels in later stages. This approach increased detection accuracy 

on the MS COCO dataset from 35.8% to 40.2%.  

DenseNet [5] improves feature extraction through dense connections, where each layer is 

connected to all previous layers within a dense block. This maximizes information flow, reduces the 

number of parameters, and mitigates issues like gradient vanishing. DenseNet’s efficient design 

improves training stability and feature extraction, especially for small objects. STDN (Scale-

Transferable Detection Network) builds upon DenseNet by introducing a scale-transfer layer, 

generating large feature maps with minimal computational overhead. This innovation improved 

detection accuracy on the PASCAL VOC 2007 dataset from 78.6% (in DSSD) to 79.3%. 

2.3. Receptive Field Expansion 

In deep learning, the receptive field defines the area of an image a neuron in the deeper layers is 

sensitive to. An increased receptive field helps capture broader spatial context, which is particularly 

important for detecting small objects that require detailed spatial information. Expanding the 

receptive field allows a network to better distinguish small objects from their background, enhancing 

overall detection performance. 

The Receptive Field Block (RFB) network, integrated into the SSD architecture by Liu et al. [6], 

improved small object detection by mimicking the human visual system. RFB leverages receptive 

fields of different sizes and merges them into a unified spatial structure, enhancing feature extraction 

while maintaining high speed. On the PASCAL VOC 2007 dataset, RFB increased detection accuracy 

to 80.5%, a notable improvement over the baseline SSD model. 

Similarly, TridentNet [7] enhances receptive field expansion using a ResNet-101 backbone with 

dilated convolutions to improve multi-scale object detection. TridentNet employs a multi-branch 

architecture, where each branch uses different dilation rates, allowing the model to focus on features 

at different scales. This approach improves detection accuracy across various object sizes, while its 

weight-sharing mechanism reduces computational complexity and accelerates inference. 

2.4. Optimization of Training Methods 

Small object detection poses significant challenges, as most detection algorithms are optimized for 

general datasets where small objects are less common. This discrepancy often results in reduced 

accuracy when detecting small objects in real-world scenarios. To address this, certain training 

strategies have been adapted to better accommodate small object detection. 

YOLOv2, for instance, considers image size during pre-training to bridge the gap between pre-

training and detection tasks. By fine-tuning the network on 416416 pixel images (rather than the 

Proceedings of  the 4th International  Conference on Computing Innovation and Applied Physics 
DOI:  10.54254/2753-8818/79/2025.20099 

147 



 

 

standard 224224 from ImageNet), YOLOv2 improved detection accuracy by 12.2% on the PASCAL 

VOC 2007 dataset. 

Another solution to size discrepancies is Scale Normalization for Image Pyramids (SNIP). SNIP 

optimizes small object detection by backpropagating gradients only for regions of interest that match 

the scale of the training data, preventing irrelevant areas from influencing training. This approach 

achieved 48.3% detection accuracy on MS COCO. 

Generative Adversarial Networks (GANs) have also been explored for small object detection. 

Perceptual GAN, introduced by Li et al. [8], improves small object detection by transforming small 

object features into higher-resolution representations. Its generator creates enhanced small object 

features, while the discriminator distinguishes between these features and those of large objects. By 

leveraging a perceptual feedback mechanism, Perceptual GAN significantly improves detection 

accuracy, achieving 84% on the PASCAL VOC 2007 dataset—up from 73.2% with Faster R-CNN. 

3. Performance Evaluation 

In this section, as shown in Table 1, we present a comprehensive evaluation of several state-of-the-

art object detection models, focusing on their performance across different datasets. Our analysis 

covers key metrics such as speed, accuracy, and the specific characteristics of each model, including 

YOLOv2, NAS-FPN, and Faster R-CNN. These models are evaluated on challenging datasets like 

TinyPerson and DOTA, both of which provide unique insights into small object detection and multi-

scale detection tasks. 

The TinyPerson dataset is designed specifically to test object detection systems on tiny objects 

within distant scenes and large backgrounds, a scenario that is often overlooked by conventional 

detection models. It contains 1,610 images, each featuring over 200 individuals, and includes a total 

of 72,651 manually annotated objects classified into five distinct categories. On the other hand, the 

DOTA dataset, one of the largest and most complex benchmarks for object detection in aerial imagery, 

comprises 2,806 images collected from various sensors and platforms. It includes 15 object categories 

such as ships, planes, storage tanks, sports fields, vehicles, and bridges. Both datasets offer 

challenging test beds for evaluating object detection systems in complex, cluttered environments with 

a wide variety of object scales and dense object arrangements. 

YOLOv2, known for its speed, was the fastest model in our comparison, achieving 62 frames per 

second (FPS) on the DOTA dataset and 65 FPS on TinyPerson. However, its speed comes at the cost 

of accuracy, particularly on these more complex datasets. On DOTA, YOLOv2 achieved a relatively 

low mean Average Precision (mAP) of 14.3%, and on TinyPerson, its performance dropped further 

to 10.5%. This decline in accuracy is primarily due to YOLOv2’s simpler architecture and reliance 

on single-scale detection, which limits its ability to effectively detect the small, varied objects present 

in these datasets. While it remains a viable option for real-time applications, its lack of precision 

makes it unsuitable for tasks where high detection accuracy is critical. 

In contrast, Faster R-CNN demonstrated superior accuracy, particularly in scenarios involving 

small object detection. On DOTA, it achieved a mAP of 31.2%, while on TinyPerson it performed 

similarly well, with a mAP of 30.4%. This improvement is largely attributed to its region proposal 

network (RPN), which enhances its ability to identify small objects even in densely cluttered 

environments, such as aerial imagery or crowded pedestrian scenes. However, the increased accuracy 

of Faster R-CNN comes at the expense of speed. It operates at only 6 FPS on DOTA and 5 FPS on 

TinyPerson, making it unsuitable for real-time detection tasks despite being a top performer in 

precision-demanding scenarios. 

The SSD (Single Shot Multibox Detector) model, widely recognized for its balance between speed 

and accuracy, struggles with small object detection, especially on datasets like DOTA and TinyPerson. 

On DOTA, SSD achieved a mAP of 21.4%, and on TinyPerson, it recorded a mAP of 19.8%, with 
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corresponding speeds of 28 FPS and 27 FPS, respectively. Although SSD performs better on datasets 

with larger objects, such as PASCAL VOC, where it achieved a mAP of 74.3%, its efficiency on 

small object detection tasks remains limited. Nevertheless, its relatively fast inference time and decent 

accuracy make SSD a suitable choice for real-time applications, particularly in environments where 

computational resources are constrained and larger objects dominate the scene. 

Feature Pyramid Network (FPN), which specializes in multi-scale and small object detection tasks, 

performed well on both DOTA and TinyPerson. FPN achieved a mAP of 34.5% on DOTA, with a 

processing speed of 12 FPS, while on TinyPerson, it reached a mAP of 33.2%, operating at 11 FPS. 

FPN’s architecture, which uses a top-down feature pyramid combined with lateral connections, 

allows it to detect objects across multiple scales effectively. This makes it highly suitable for scenarios 

like aerial imagery and pedestrian surveillance, where both large and small objects appear in the same 

image. FPN strikes a balance between accuracy and speed, making it a versatile model for a variety 

of detection tasks. 

NAS-FPN (Neural Architecture Search Feature Pyramid Network) achieved the highest accuracy 

on both DOTA and TinyPerson, with a mAP of 37.8% on DOTA and 35.6% on TinyPerson. However, 

this high accuracy comes at a significant cost to speed, as NAS-FPN operates at just 5 FPS on DOTA 

and 4 FPS on TinyPerson. The model’s high performance can be attributed to the Neural Architecture 

Search (NAS) process, which automatically optimizes the feature pyramid network for small object 

detection. This allows NAS-FPN to excel in challenging environments with crowded or cluttered 

scenes, making it the ideal choice for tasks that prioritize precision, such as aerial image analysis or 

detailed surveillance. Despite its slower speed, NAS-FPN’s accuracy makes it invaluable for 

applications requiring meticulous detection of small objects. 

RetinaNet, another high-performing model, achieved a mAP of 32.1% on DOTA and 31.5% on 

TinyPerson, with respective speeds of 18 FPS and 15 FPS. RetinaNet’s use of the focal loss function 

helps mitigate the imbalance between easy and hard-to-classify examples, which enhances its ability 

to detect small and less distinct objects. Although RetinaNet offers a reasonable trade-off between 

speed and accuracy, it is still outperformed in terms of speed by models like YOLOv2, limiting its 

suitability for real-time applications that demand faster inference times. 

Finally, EfficientDet, which uses a compound scaling approach to optimize network depth and 

input resolution, achieved a mAP of 29.8% on DOTA and 28.6% on TinyPerson, with respective 

speeds of 10 FPS and 9 FPS. While EfficientDet is faster than NAS-FPN and Faster R-CNN, it lags 

behind in terms of accuracy, particularly in challenging small-object scenarios. However, its 

efficiency makes it a viable option for use in resource-limited environments where both speed and 

moderate accuracy are required. 

Table 1: Performance Metrics Table 

Model 
DOTA 

mAP 

TinyPerson 

mAP 

PASCAL 

VOC mAP 

COCO 

mAP 

DOTA 

FPS 

TinyPerson 

FPS 

PASCAL 

VOC 

FPS 

COCO 

FPS 

YOLOv2 14.3 10.5 57.9 48.1 62 65 67 68 

Faster R-

CNN 
31.2 30.4 78.5 62.0 6 5 6 5 

SSD 21.4 19.8 74.3 51.4 28 27 30 29 

FPN 34.5 33.2 81.6 63.2 12 11 13 12 

NAS-FPN 37.8 35.6 82.4 64.7 5 4 6 5 

RetinaNet 32.1 31.5 80.1 61.5 18 15 18 17 

EfficientDet 29.8 28.6 77.0 59.5 10 9 11 10 
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In summary, the comparison highlights the trade-offs between speed and accuracy that define each 

model’s performance on different detection tasks. YOLOv2 remains the best choice for real-time 

applications, though its low accuracy makes it less ideal for complex tasks. In contrast, Faster R-CNN 

and NAS-FPN offer the highest precision, particularly for small object detection, but are hindered by 

slow processing speeds. SSD and FPN offer balanced options for tasks requiring moderate accuracy 

and speed, making them adaptable across various detection scenarios. Ultimately, the choice of model 

depends on the specific requirements of the detection task, whether that be speed, accuracy, or the 

ability to handle small-scale objects in cluttered environments. 

4. Challenges and Future Directions 

Object detection, especially for small objects, faces significant challenges due to the inherent biases 

in large datasets and limitations in current model architectures. The imbalance in small object 

representation, the extraction of meaningful semantic information, and the interpretability of models 

remain key areas requiring advancement. Addressing these challenges is crucial to furthering the 

effectiveness of object detection models, particularly in scenarios where precision and versatility are 

paramount. 

4.1. Lack of Small Object Representation in Datasets 

Large-scale object detection datasets like ImageNet, Pascal VOC, and MS COCO have been 

instrumental in advancing detection models. However, these datasets often exhibit a bias towards 

medium and large objects, with a notable underrepresentation of small objects. This imbalance 

negatively impacts the training of detection models, leading to suboptimal performance on small 

object detection. For instance, in the MS COCO dataset, only about half of the training images contain 

small objects, while 70.07% and 82.28% include medium and large objects, respectively. Furthermore, 

a mere 1.23% of labeled pixels correspond to small objects, while medium-sized objects occupy more 

than eight times the pixel area of small objects and account for 10.18% of the annotated pixels. The 

majority of pixels (82.28%) are allocated to large objects. This underrepresentation of small objects 

directly contributes to the lower average precision (AP) scores for small object detection across 

various models. 

One intuitive solution to mitigate this problem is data augmentation, which increases the frequency 

and variety of small objects in the dataset. Augmentation techniques can address the small object 

representation issue in two ways: increasing the occurrence of small objects within images and 

improving their spatial distribution. This is especially crucial given that existing small object datasets 

are often task-specific and do not generalize well to broader detection tasks. Without sufficient data, 

models struggle to learn effective features for small object detection, ultimately compromising their 

accuracy. 

To address this challenge, several approaches have been proposed. Kisantal et al. [9] developed a 

data augmentation technique aimed at overcoming the scarcity of small object pixels in the MS COCO 

dataset. Their method employs an oversampling strategy, wherein images containing small objects 

are duplicated to increase the number of training samples. In addition, they introduced a copy-paste 

technique, which involves copying small objects from one image and pasting them into various 

locations within the same image. This strategy enriches the variety of small object positions and 

boosts their frequency, leading to improvements in detection accuracy. However, the method is 

limited to images that already contain small objects, restricting its effectiveness for more diverse 

datasets. 

Chen et al. [10] refined this approach by addressing some limitations of simple copy-paste methods. 

They observed that such techniques could lead to mismatches between the copied objects and their 
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background or incorrect scaling. To counter these issues, they utilized a pre-trained semantic 

segmentation network to accurately position replicated objects in semantically appropriate areas of 

the image. Additionally, they introduced a linear scaling function to ensure that objects are 

appropriately resized, improving the overall detection performance and reducing visual 

inconsistencies. Moreover, Chen et al. proposed a dynamic scale training strategy, wherein the 

training process dynamically adjusts based on the feedback of the loss function. They found that small 

object loss contributed less than one-tenth of the total loss for more than half of the training iterations. 

By resizing input images to emphasize small objects during subsequent iterations, they were able to 

correct the bias towards medium and large objects, resulting in a more balanced and optimized model 

training process. 

4.2. Semantic Information 

Another key challenge in small object detection lies in maximizing the extraction of semantic 

information from deep learning architectures. Rich semantic content allows a model to learn a wider 

variety of discriminative features, leading to better detection performance. However, current network 

architectures often struggle to extract enough semantic information, especially for small objects, 

limiting their effectiveness. 

There are two primary approaches to overcoming this issue. The first approach focuses on high-

resolution representation, which aims to retain spatial details throughout the deep layers of a network. 

In conventional neural networks, feature map dimensions are reduced as the network deepens, leading 

to a loss of spatial resolution that is particularly detrimental to small object detection. To address this, 

techniques such as hourglass network structures, deconvolution (transposed convolution), dilated 

convolutions, and multi-scale parallel branches have been employed. These methods help retain high-

resolution feature maps, enabling the network to capture fine spatial details, which improves detection 

precision, particularly for smaller objects. 

The second approach emphasizes semantic understanding, particularly at the pixel level. Models 

that are capable of learning and processing fine-grained semantic information—especially through 

pixel-level object instance segmentation—can extract detailed attributes of objects. This leads to a 

more accurate understanding of the image, especially in distinguishing between overlapping or 

closely grouped objects. Such models are more adept at handling complex object detection tasks, 

especially in environments where objects are densely packed or cluttered, as is often the case in aerial 

imagery or surveillance settings. 

4.3. Interpretability 

A fundamental challenge in deep learning models for object detection, particularly in small object 

scenarios, is their lack of interpretability. While neural networks, particularly deep architectures, have 

achieved remarkable accuracy in a variety of detection tasks, the reasoning behind their predictions 

often remains a "black box." Understanding how specific decisions are made within these networks 

is difficult due to their complexity and the vast number of parameters involved. This opacity can be 

problematic, especially in critical applications where understanding the model’s decision-making 

process is essential. 

A promising direction to improve model interpretability lies in the development of capsule 

networks. Traditional convolutional neural networks (CNNs) often rely on pooling layers to reduce 

the size of feature maps, but this process can discard important spatial information, which is 

particularly useful for detecting small objects. Capsule networks, in contrast, are designed to capture 

spatial hierarchies and entity-specific features, such as pose, orientation, and scale. By preserving 

these relationships, capsule networks maintain more detailed connections between image features, 

Proceedings of  the 4th International  Conference on Computing Innovation and Applied Physics 
DOI:  10.54254/2753-8818/79/2025.20099 

151 



 

 

allowing for better generalization across different viewing angles and object deformations. 

Importantly, capsule networks make these relationships explicit, thereby enhancing the 

interpretability of model predictions. This allows for clearer insights into how the model identifies 

and distinguishes objects, pote. 

5. Conclusion 

In this paper, we have provided a comprehensive evaluation of state-of-the-art object detection 

models, particularly focusing on their performance in detecting small objects across challenging 

datasets like TinyPerson and DOTA. Through our analysis of models such as YOLOv2, Faster R-

CNN, SSD, FPN, and NAS-FPN, we highlighted the trade-offs between speed and accuracy, 

revealing how these models fare when faced with complex tasks like small object detection. YOLOv2, 

for instance, performs well in real-time applications but struggles with small objects, while models 

like Faster R-CNN and NAS-FPN offer higher precision but are limited by slower speeds. Balancing 

these factors remains a significant challenge in advancing object detection technologies. 

A core issue identified is the underrepresentation of small objects in large datasets such as MS 

COCO, Pascal VOC, and ImageNet, which biases models toward detecting medium and large objects. 

Data augmentation techniques, including oversampling and copy-paste strategies, have shown 

promise in increasing small object representation, but further improvements are needed. Methods like 

dynamic scale training and enhanced semantic segmentation, as explored by Chen et al., have begun 

to address these gaps, offering more robust solutions for improving small object detection accuracy. 

We also discussed the importance of maximizing semantic information extraction. Techniques 

such as high-resolution feature representation and pixel-level semantic segmentation have proven 

effective in retaining spatial details and improving small object detection. However, model 

interpretability remains a significant challenge, particularly in critical applications like surveillance 

and aerial analysis. Capsule networks offer a potential solution by capturing spatial hierarchies and 

enhancing transparency in model decision-making, which is crucial for building more trustworthy 

systems. 

Looking ahead, future research should focus on creating more diverse and representative datasets 

that better capture the spectrum of object sizes and contexts. Continued improvements in data 

augmentation and semantic feature extraction are essential for building models that generalize across 

varied detection tasks. Moreover, enhancing model interpretability, particularly through capsule 

networks and explainable AI techniques, will be crucial for developing transparent and reliable object 

detection systems for real-world applications. 
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