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Abstract: When the coding assignments step into more complicated and structured periods 

for individuals, how to cultivate the skills have become the urgent needs for people who are 

engaged in sophisticated coding development in both academics as well as industries, 

especially those who have some basic knowledge in their undergraduate studies. In this paper, 

a state-of-art interactive tool: Programming Decomposition Tool (PDT) is proposed to help 

people enhance their complicated coding skills and further to broaden their CS learning 

horizons. The tools have two unique features: 1. The learning interface is adaptive and 

dynamic with respect to the detection of the knowledge depth of users. 2. Difficult learning 

parts will be decomposed into several easier sessions for better acquisition. 

Keywords: Computer science learning, Interactive tools, Programming educations, Dynamic 

interface 

1. Introduction And Intellectual Merits 

With the rising attention paid to advanced Computer Science Learning (CSL), how to lead the 

mentioned groups to mastering complicated coding abilities has gradually become the focus of CSL 

educators and scholars. In general, although the early studies have laid certain foundations on 

advanced CS learners and they are able to develop programming tasks in certain difficulty levels, 

their professional reserves are not enriched enough when it comes to the more sophisticated 

frameworks and logics including the developed mathematical understanding as well as the mature 

programming capacities. 

To be specific, some doctoral students in Chemistry/Material Engineering obtained basic CS 

knowledge from introductory courses and mastered some fundamental programming skills. Upon 

diving into higher-level studies in their domains, programming and CS knowledge are not mandatory 

in their daily learning. Consequently, their programming realizations gradually fade away and are 

hard to recall in the junior or senior stages. The obtained knowledge fails in tackling the sophisticated 

coding challenges in work and it is less efficient for them to take courses unrelated to their research 

projects. But for some of the group, programming and algorithm applications are pivotal to their 

doctoral research and it even forces them to be engaged in higher-level computing development, 

which form great practical gaps between their CS foundations and research expectations. 

Regarding the issue, in this paper, the paper would like to propose a state-of-art interactive tool: 
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Programming Decomposition Tool (PDT) to help people enhance their complicated coding skills and 

further to broaden their CS learning horizons. The objectives of the tools are summarized as the 

following: 

 • The tool aims at constructing a dynamic knowledge boundary detection mechanism to de-

compose users’ coding tasks for easier development. The coding decomposition is cohesively related 

to the boundary score quantified by the Bayesian Classifier and Markov Process and the score is 

dynamics computed based on the real-time monitor on users’ behaviors and accomplishments. 

 • The decomposition will be responsive to the score indicating the acquisition of the users’ 

programming knowledge level upon the score available; 

 • The analysis on multiple users corresponds to the scores of each individual. The users with 

closed scores will be classified into the same groups, which effectively evicts the reliance on the large 

amount of prior user experiences. 

There are two distinctive characteristics of the tool: 

 • The qualitative analysis on users is dynamic and flexible. The level of knowledge boundary 

score is the reflection on users programming abilities, which constitute the causal inference on 

knowledge levels of users. Different from the one-time judgment, the inference is adaptive in users’ 

learning and operating process instead of the fixed coding decomposition. Once the system detects 

the significant change on the boundary score, the presented de- composition will be flexibly 

accommodated to the changes. 

 • The quantitative analysis on users is efficient in processing interactions between users and 

tools. The introduction to computing methods reduces the reliance on the constructions on prior 

experiences and the decomposition originates from simple and accurate mathematical representations 

on users where the score derives from multiple weighted components on knowledge mastery and 

coding concept cognitions. 

2. Background 

It is expected to reinforce the perceptions of CSL [1] and finally benefit the prosperity of the CSL 

community. The quantitative approach is promising to empower the recognitions on the knowledge, 

abilities, skills of users and extend the suitable decomposition on their developments, which furthers 

advanced programming professions and fosters the higher-level coding logistics, thoughts as well as 

abilities for users [2]. In addition, the tools are endowed with the time-series properties, which 

bolsters the real-time and responsive mechanism on the inter- actions between users and interfaces. 

Undoubtedly, more frequent and constructive interactions are involved in the CSL via the state-of-art 

tool to facilitate the explorations and realizations on Computer Science Education concerning the 

diverse qualitative evaluations on knowledge levels, which is likely to germinate the groundbreaking 

findings on both CSL and cognitive science. 

It is probable that users encounter the obstacles to practice their advanced coding skills [3]. The 

qualitative analysis is dynamic and highly relevant to the action chain of users, to some extent, every 

action that user takes definitely affects the performance of the tool. If the users do not follow the 

tutorial and guidance provided by the tool and take subjective actions, the inaccurate analysis and 

feedback is generated in likelihood and leads to the learning inefficiency. What is more, users may be 

in dilemma for a long time even if the interface has made optimal and adaptive recommendations 

based on the real-time performance. In this case, the interface is unable to facilitate users assignments 

and the actual help should be considered to be out of the tool itself. In other words, users are expected 

to implement some CS/Maths knowledge to improve themselves instead of merely relying on 

decomposition ways. 
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3. Related Work 

In retrospect to the development of Computer Science Learning (CSL) tools [4], on the one hand, 

most are focused on enhancing the fundamental coding grammar teaching without paying attention 

to guiding students to structure the coding logics in a more accessible, hierarchical and 

straightforward way. [5] is concerned with a game-designed environment to help advanced learners 

to practice mathematical coding. They develop four kinds of blocks to engage users in collaborative 

games with reward mechanisms to train their mathematical thinking. All mathematical logic is 

decomposed into a series of steps and visualized to present users its computational process. The 

research shed great light on block-based and game-based programming regarding the transmission 

from the text-based to other modality-based formats, which only concentrates on the light-layer 

coding logic visualization rather than the advanced thinking beyond the direct logics. 

[6] introduces an effective way to quantify the boundary of knowledge indicating the depth of 

knowledge that learners can reach in linguistic studies. The measurement is developed from Bayesian 

inference, design the knowledge graph as a multidimensional pointer and discuss the assessment 

approaches. On the one hand, the research is enlightening to lead scholars considering the significance 

of quantitative methods on assessing user behaviors. On the other hand, they do not explore the 

dynamics of qualitative analysis on adapting the tool’s accessibility to users for producing a better 

sense of practice according to the acquisitions on users knowledge level. They are pioneers in 

detection computing but not contributive to applying the computation to design a practical tool or 

interface. Some tools have proposed the concept that the learning process is a stepwise process and 

prototyped tools could be simulated as progressive modes to align with the formation process of 

human cognition on complex systems. 

[7] demonstrates the necessity and effectiveness of constructing a real-time feedback mechanism 

to help users in their learning process instead of feedback only available upon the completion of their 

assignments. Nevertheless, their methods mostly rely on the record experiences collected from testers 

or past users, which means the maturity of the designed tools is tightly relevant to the abundancy [8-

12], reliability and generality of original datasets. If the original collections are unable to satisfy the 

three principles such as incompetence in obtaining enough representative individuals and acquiring 

the full coverage on configurations of users behaviors, the designs are definitely supposed to fail in 

assisting users with achieving preset goals. 

4. Design Argument 

4.1. Desired Functionality 

The configuration of PDT aims at assisting users to develop advanced algorithms in a more accessible 

way and finally abulates their programming thoughts. In general, PDT firstly reveals the knowledge 

deficiency between their current knowledge levels and target algorithm levels and then simplifies the 

difficulty of the whole assignment for users. 

The decomposition acts as a bridge between the underdeveloped coding abilities and expected 

coding abilities for users, which emphasize on predicting, detecting and analyzing the obstacles that 

users encounter. Normally, users are not very clear about their foundations and have higher 

expectations on their target work so that the early attempts are usually unsuccessful. In order to bridge 

the underdeveloped issues (knowledge, skills etc.), they are likely to be subject to acquiring the less 

meaningful CS knowledge due to unclear realization of where they should improve. PDT, clarifies 

the orientation of enhancement for users and matches their ongoing projects with a simplified, 

friendly and transferring decomposed development style when they are engaged in their target 

programming. As a consequence, embedded self-learning is a real-time perception of users and 
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generates dynamic qualitative analysis on programming capacities with the help of quantitative 

methods. 

On the other hand, the mechanism of programming assistance offers the valuable chances to obtain 

more sensitive, informative CS education data in mathematical representations. PDT identifies as a 

double functional tool: monitors and analytics. The monitoring functions are reflected in its helper 

roles, and for analytics, PDT precisely tracks a series of time-based actions and approaches more 

accurate programming qualitative inference on programming of users. For most real-time tools, the 

feedback and assistance is clustered based on action itself rather than the mathematical representation, 

which impose the restrictions on summarizing the quality classification on closed groups. With the 

help of the computing system, it is much easier for researchers to investigate the behavior 

correlationship and inference, which is enlightening to capture the trivial change on human learning 

as well as cognitions. 

4.2. Centralized Characteristics 

The feedback and adjustment mainly rely on the similar user computing instead of all users in the 

documents. Thus, the PDT can achieve more accurate and adaptive decomposition across the 

programming development. Most common real-time feedback learning tools are dependent on 

mindsets collected from all users or experimental testers, which do not distinguish the users with 

different habits, background as well as realization of their own coding issues. The PDT are more 

sensitive to the users with closed knowledge level through the boundary computing mechanism, 

reveal which users in the past can be referred for ongoing users and facilitate the construction of 

specific labeling on existing algorithm libraries. 

The PDT will be advantageous on timesaving for users who are eager to strengthen their CS 

foundations. The relatively accurate analysis on the knowledge boundary will generate guidance for 

users when they are in a dilemma without any progress. At this point, the PDT is likely to recommend 

the learning materials for users and advise them to review the materials before they return to the 

coding interfaces. Enlightened by the recommendations, users are clearer about what they are 

expected to study before achieving the desired goals and navigate the most relevant knowledge to 

acquire and finally shorten their learning time. 

5. Approach 

The main prototypes of PDT can be described as two interacting parts and one self-learning session. 

Briefly, users are firstly encouraged to participate in a CS foundation survey and outline a rough 

knowledge configuration for an intelligent system firstly. After that, the dynamic feedback system is 

supposed to detect the behavior of users and enable the decomposition to be adaptive and intelligent. 

In the final stage, the system is refurbished to update its prior experience library to elaborate its own 

functionality. 

To be specific, the adaptive decomposition derives from the knowledge boundary computing 

methods. Boundary computing is a quantitative approach to detecting the users’ coding foundations 

as well as perceptions on the target mathematical knowledge. The method can assume a scenario 

where there is a graduate student with a desire to code Decision Tree step by step, who ever took a 

CS-related course before but time went through for several years. Under the circumstance, the PDT 

will invite the user to participate in a knowledge testing before the target algorithm coding interface, 

which comprises several coding questions relevant to the target algorithm as well as basic data 

structure. Upon the completion of the test, the tool analyzes the performance of users combining it 

with the saved information from past users and then calculates the coding knowledge boundary score 

of the user. For the contextual example, the user’s knowledge boundary score is approximately 
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equivalent to a freshman undergraduate in CS major after the testing computation. In light of the 

boundary score, the initialized decomposition will split the Decision Tree algorithm into 5 to 6 

modules com- pared with normal 4 modules to ease the programming difficulty. With the 

investigation on user background and the qualitative reasoning on the programming knowledge, the 

decomposition is likely to be more user-friendly and personal-adaptive. 

Although the qualitative investigation has been completed before the generation of the 

decomposed coding interface, the rough derivation cannot represent the actual programming level of 

users. As a result, the tools will continue its learning in the operation process of users. To be detailed, 

the user has started to the first programming subsection of Decision Tree and encountered the 

bottleneck in branch pruning coding and been stuck in it for a while. PDT would like to detect the 

long stay and quantify the new information into the boundary computing system. The developed 

algorithms smartly percept the signal and dynamically update the boundary score. If the updated 

boundary score significantly varies from the beginning score, the decomposition system will revise 

the subsequent decomposition and structure the coding subsections to adjust the needs of users in a 

more considerate way. 

Last but not least, each users’ operation history will be documented by the tools and correlated 

with each individual. The correlation is based on two aspects: a. How to upgrade the initialized 

background investigation in a more accurate computing derivation and launch the decomposition in 

a more scientific way; b. How to update the existing library of algorithms with the help of users’ 

practice. Take the example of the user as well, he/she has finished all subsections and his/her activities 

are documented by the system. The users are assumed to be stuck in the branch pruning, entropy 

computation, feature classification for long-run and these three parts will be labeled by the tools and 

given higher weights if the next users have the closed evaluating boundary score in the qualitative 

analysis. For instance, there is another user deploying the PDT to develop the Decision Tree algorithm 

and securing the similar knowledge boundary score. PDT will pay more attention to users’ coding 

when they are proceeding to the labeled sessions and decompose the whole coding based on the 

previous users’ experiences. Similarly, the PDT will add new data into the library to update algorithms 

with similar coding difficulties. 

6. Conclusion 

The plan is to recruit the participants for 5 groups and invite them to participate in the PDT 

experiments. Each group contains at least 3 members with closed knowledge boundary scores 

computed by constructed algorithms. After the group and preliminary background investigations have 

been conducted, every participant is required to code different algorithms in respect to the adaptive 

de- compositions. The paper would like to analyze all data collected from users and place more 

attention on the significant change on individual boundary scores. Once the scores are revised vastly, 

manual inquiry and interview will be performed on users and know about their progress as well as 

difficulties, which also works as auxiliary qualitative analysis. 

The method also expect to prototype several plans for each algorithm in the library. For instance, 

it is likely that K-mean algorithms could be decomposed into 3, 6, 9 parts for different groups, 

respectively and analyze their development process. What is more, even if the same group has closed 

boundary scores, the method would like to investigate the trivial score effect and explore more 

possibilities for individual differences. 

The method are dedicated to innovating the boundary score in a cascade mode, which aligns with 

the neutral structures of brains. The human cognitions usually follow the order that starts from most 

fundamentals and further to higher-level perceptions with deepening acquisitions and accumulated 

experiences. In light of this, the computing algorithms of boundary score will also start from the low-

level boundary detection for users without rapid skipping to high-level detection. To be specific, in 
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the background survey, the first or first two questions will be very easy for users to make sure that 

they have any CS foundations before. If they fail in the most beginning questions, the PDT is 

supposed to recommend basic open-source CS courses for them before actual coding rather than 

directly introduce them to access the console interfaces. 
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