References
[1]. Ye, G., Liu, Y., Zhou, T., Li, X., & Zhang, Q. (2023). An automatic music generation and evaluation method based on transfer learning. PLOS ONE, 18(5), e0283103.
[2]. Zhou, X. (2023). Analysis of Evaluation in Artificial Intelligence Music. Journal of Artificial Intelligence Practice, 6(8), 6-11.
[3]. Yu, X., Ma, N., Zheng, L., Wang, L., & Wang, K. (2023). Developments and Applications of Artificial Intelligence in Music Education. Technologies, 11(2), 42.
[4]. Civit, M., Civit-Masot, J., Cuadrado, F., & Escalona, M. J. (2022). A systematic review of artificial intelligence-based music generation: Scope, applications, and future trends. Expert Systems with Applications, 209, 118190.
[5]. Swanwick, K. (2002). Musical knowledge: Intuition, analysis and music education. Routledge.
[6]. Omar, R., Hailstone, J. C., Warren, J. E., Crutch, S. J., & Warren, J. D. (2010). The cognitive organization of music knowledge: a clinical analysis. Brain, 133(4), 1200-1213.
[7]. Carroll, C. L. (2020). Seeing the invisible: Theorising connections between informal and formal musical knowledge. Research Studies in Music Education, 42(1), 37-55.
[8]. Johnson, M. L. (2002). Toward an expert system for expressive musical performance. Computer, 24(7), 30-34.
[9]. Raphael, C. (2001). A probabilistic expert system for automatic musical accompaniment. Journal of Computational and Graphical Statistics, 10(3), 487-512.
[10]. Cope, D. (1987). An expert system for computer-assisted composition. Computer Music Journal, 11(4), 30-46.