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Abstract. As artificial intelligence (AI)—a core driver of the Fourth Industrial Revolution—
continues to permeate the economy and society, its impact on labor market structure and
income distribution patterns has grown increasingly salient. Grounded in the "skill-task
substitution matrix" framework, this paper examines how AI promotes employment
structural polarization and deepens income disparities among groups by restructuring labor
division and job demands. Building on a systematic review of relevant literature, the study
employs empirical analysis using China’s provincial panel data (2020–2024), combined with
the Gini coefficient and AI industry indicators. Results reveal that while AI adoption boosts
production efficiency and high-skilled employment, it also accelerates the displacement of
routine task-based jobs, widening income gaps between regions and demographic groups.
Finally, the paper proposes policy recommendations for coordinated governance across
technology, institutions, and culture to mitigate AI’s adverse effects on social equity.
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1. Introduction

As a core driver of the Fourth Industrial Revolution, artificial intelligence (AI) is reshaping the
global economic and social structure at an unprecedented speed. According to a 2024 report by the
China Artificial Intelligence Industry Development Alliance (CAIIA), AI has emerged as a key
engine leading industrial upgrading and driving economic growth. For instance, iResearch notes that
China’s AI industry scale reached approximately RMB 269.7 billion in 2024, representing a year-on-
year increase of ~26.2%. A synergistic industrial ecosystem spanning the infrastructure, model, and
application layers is also accelerating its formation [1]. However, technological progress does not
merely bring efficiency gains and economic prosperity—it simultaneously sparks profound
challenges to social equity, income distribution, and labor market stability.

In China’s listed manufacturing firms, a higher penetration rate of industrial robots leads to
reduced labor demand, manifesting as an employment polarization trend [2]. This "skill-task"
substitution logic is profoundly reshaping the structural characteristics of the labor market. On the
one hand, AI accelerates the disappearance of routine task-based jobs through the Displacement
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Effect; on the other hand, it boosts the marginal productivity of high-skilled workers via the
Productivity Effect, further raising income levels for high-skilled groups.

To fully understand AI’s impacts on the labor market and income distribution, we must situate
them within China’s economic transformation and globalization context. Data from the National
Bureau of Statistics (NBS) show that China’s Gini coefficient for national per capita disposable
income stood at 0.465 in 2023—still at a high level. This gap is reflected in three dimensions:
regional, urban-rural, and industrial. Regionally, eastern coastal areas generally have higher income
levels than central and western regions. For example, in 2024, per capita disposable income in
Beijing and Shanghai exceeded RMB 70,000, while that in Guizhou and Yunnan was less than RMB
30,000. Industrially, high-value-added sectors such as finance and information technology have
significantly higher incomes than traditional manufacturing and services; the rise of the digital
economy has further widened inter-industry gaps. The Gini coefficient has fluctuated with a "decline
followed by an increase" trend in recent years—peaking at 0.491 in 2008 before declining, yet
remaining at 0.465 in 2023. This indicates that income distribution issues have not been
fundamentally resolved. Next, analyzing the ​regional pattern of AI industry development: AI has
grown rapidly in China but exhibits significant regional imbalance. First, there is a pronounced
regional agglomeration effect. As of April 2025, China’s total AI patent applications exceeded 1.5
million, with Beijing and Guangdong each surpassing 310,000; Jiangsu, Zhejiang, and Shanghai
reported no more than 122,000 respectively [3]; Second-tier regions Huna are accelerating their AI
layouts with support from industrial clusters and policies. For example, Hunan formed an AI cluster:
its core AI industry output value reached RMB 12.7 billion in the first half of 2024, a year-on-year
increase of 17% [4-5]; In contrast, AI industries in central and western provinces remain in their
initial stages. High-value-added links such as AI chips and data infrastructure have primarily
clustered in coastal and developed provinces in recent years—with central and western regions
holding a small share of these segments [6].

Based on this, this paper will explore the topic from the following angles. First, in the Research
Background section, we systematically review the history and current state of China’s income gap,
combined with the spatial pattern of AI industry development, to lay a realistic foundation for
subsequent analysis. Second, in the Literature Review section, we comprehensively synthesize
domestic and international research progress on AI’s links to the labor market and income
distribution, identify gaps in existing work, and clarify this paper’s research positioning and
innovations. Third, in the Methodology section, we introduce the empirical framework—grounded
in Dagum Gini coefficient decomposition and the "skill-task" substitution matrix—explaining data
sources, variable definitions, and model selection. Fourth, in the ​Data Analysis section, using panel
data from 31 Chinese provinces (2020–2024), we empirically test the relationship between AI
development and income inequality, with in-depth discussions across skill, spatial, and
intergenerational.

2. Literature review

Recent research on technology’s impact on labor division and inequality has coalesced into two core
strands. First, the analytical framework has shifted from an "occupation/skill" focus to a "task-
oriented" approach, emphasizing that technology restructures labor demand by substituting routine
tasks and creating new ones—with displacement effects (job losses from automation) and
compensation effects (wage gains from new task creation) jointly shaping wage structures [7];
Acemoglu & Restrepo further refined this logic, arguing that automation could lead to net job loss if
substitution outpaces new task creation. However, they noted that re-embedding new tasks
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(integrating them into the economy) can mitigate shocks, and uneven regional distribution of these
tasks amplifies spatial inequality [8-10]. Second, the early skill-biased technical change (SBTC)
theory posited that technology increases demand for high-skilled labor and widens skill premiums
[11], Subsequent studies revealed an "employment polarization" pattern: declining medium-skilled
jobs alongside rising high- and low-skilled positions, resulting in an "hollowing out" of middle-
income groups [12]; Though Frey & Osborne’s machine learning-based estimate of occupations’
"computerization" probability faced criticism, it catalyzed fine-grained research based on task
decomposition—distinguishing short-term substitution from long-term occupational transformation
[13].

Extended research on automation and inequality shows that task substitution may explain 50%–
70% of changes in U.S. wage structures and correlates strongly with wage gaps across demographic
groups [14]; For AI, its incremental capabilities (e.g., improving over time) and platform effects
make it more likely to generate a "triple inequality" of top concentration (wealth accruing to AI
elites), middle hollowing-out (erosion of medium-skilled jobs), and bottom vulnerability (precarious
low-wage work) [15]. From a sociological lens, algorithmic bias replicates discrimination in hiring,
credit, and other domains, while "technological narratives" (e.g., framing AI as universally
beneficial) shape how gains are distributed [16]. Focusing on China, the spatial agglomeration of the
AI industry (e.g., in Guangdong and Beijing) exacerbates regional inequality [17], However,
existing studies suffer from three key gaps. (1) insufficient provincial panel data on task
segmentation (granular breakdown of jobs into routine/non-routine tasks); (2) lack of systematic
quantification of algorithmic bias’s impact on Chinese labor markets; and (3) limited causal
evidence on how AI policies affect inequality. This paper addresses these gaps by integrating the
"skill-task substitution matrix" with Dagum Gini coefficient decomposition and leveraging panel
data from 31 Chinese provinces (2020–2024).

3. Methodology

3.1. Overview of research design

This paper uses panel data from 31 Chinese provinces, autonomous regions, and municipalities
(2020–2024) as a sample and employs a three-step empirical strategy to test the hypotheses.

(1) Construct and present descriptive statistics on the spatial-temporal distribution of AI
indicators and the Gini coefficient;(2) Use the Dagum Gini decomposition method to split total
inequality into three components—within-region inequality, between-region inequality, and
transvariation(overlap/surpassment)—to identify AI’s contribution to different sources of inequality;
(3) Develop a provincial “AI exposure index” based on the “skill-task substitution matrix” and
estimate the causal relationship between AI and income inequality using a panel fixed-effects
framework. Heterogeneity and robustness tests (e.g., instrumental variables, lagged terms, sub-
samples) are also conducted. Refer to the script and sample results you provided for the
implementation of data integration and preliminary panel regression.

3.2. Data and variable construction

Empirical tests are based on panel data from 31 Chinese provinces, autonomous regions, and
municipalities (2020–2024). Core variables and their construction are detailed below.
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3.2.1. Dependent variable: income inequality(Inequ{i,t})

The Gini coefficient is used as the core indicator to measure regional income inequality. Data are
directly sourced from the China Statistical Yearbook, which reports the Gini coefficient of national
per capita disposable income. The value ranges from 0 to 1, with higher values indicating greater
income inequality.

3.2.2. Core explanatory variable: AI development level(AI{i,t})

To comprehensively measure the overall AI development level of each province, we construct a
multidimensional evaluation index system covering four dimensions. Industry scale: Output value of
AI core industries; Industrial agglomeration: Location entropy of AI-related enterprises; Innovation
capacity: Number of granted AI patents; Application depth and computing power foundation:
Enterprise cloud adoption rate and number of standard racks in data centers.

First, raw indicators for each dimension are normalized using range normalization to eliminate
dimensional differences. Then, the Coefficient of Variation Method is applied to determine objective
weights for each indicator (calculation details are provided in Chapter 4). Finally, the normalized
indicators are weighted to form a percentage-based “comprehensive AI score.” Higher scores
indicate higher AI development levels in a given province and year.

3.2.3. Control variables(X~i,t~)

To control for socioeconomic factors that may affect income distribution, we include the following
variables. Industrial structure: Proportion of added value from secondary and tertiary industries in
GDP; Urbanization level: Proportion of urban population in total population; Human capital stock:
Measured by average years of schooling or the proportion of higher education students; Labor
market conditions: Urban registered unemployment rate; Government regulation intensity: Per
capita fiscal transfer payments.

Data for all control variables are sourced from the China Statistical Yearbook, China Population
and Employment Statistical Yearbook, and provincial statistical yearbooks for each year.

3.3. Dagum Gini decomposition

To identify the sources of inequality and quantify AI’s impact on each component, this paper
employs the Dagum (1997) Gini coefficient decomposition method, which decomposes the total
Gini coefficient into three distinct parts: within-region inequality (GW ), between-region inequality
(GB), and transvariation (GT) .

(1)

More specifically, if the sample is divided into m regions (or groups) so that the Gini coefficient
of the r region is Gr, the population proportion is pr, and the mean is μr, the population Gini can be
written as a weighted form and decomposed by Dagum's method (see Dagum, 1997 for details). The
advantage of the Dagum method is that it quantifies the inequality generated by cross-overlap
(intersection of income distributions in different regions) as individual terms, thereby identifying
"whether the distribution overlap or overlap between regions leads to inequality". This paper

G = GW + GB + GT
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calculates the time series of GW, GB, GT for each year from 2020 to 2024 and examines the
correlation between AI indicators (or AIExp) and the three types of inequality. The specific formulas
and implementations used refer to the instructions and example formulas for Dagum in your weekly
newsletter.

3.4. Data standardization and calculation

For data standardization, this paper uses the ​range normalization method​ to eliminate scale effects.
The specific formula is as follows.

(2)

Among them,     is the original value of the j index in province i. In calculating the weight of
the coefficient of variation method, the coefficient of variation (CV) is calculated, and the
coefficient of variation is used to reflect the degree of discretion of the index.

(3)

In the above formula,     represents the standard deviation of indicator j, while    . represents
the mean of indicator j. In this paper, the following formula is used to calculate the data weights, and
the weighting results are shown in Table 1.

(4)

Table 1. Weight allocation results

Index Coefficient Weight(wj)

Industry scale 2.433 0.612
Industrial agglomeration 0.346 0.087

Innovation ability 0.458 0.115
Depth of application 0.707 0.186

This paper uses the following formula to calculate the comprehensive score

(5)

where Si is the comprehensive score (percentage system) of province i.

Xij =
xij−min(xj)

max(xj)−min(xj)

Xij

CV j =
σj

μj

σj μj

wj =
CV j

Σ4
j=1CV j

Si = ∑4
j=1 (wj × Xij) × 100
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Table 2. Comprehensive AI scores of each province and city in China after calculation

Province Scored in 2020 Scored in 2021 Scored in 2022 Score in 2023 Score in 2024

Anhui 28.45 32.67 36.82 41.03 45.21
Beijing 85.23 87.61 89.32 90.78 92.41
Fujian 42.18 46.35 50.49 54.62 58.73
Gansu 18.27 20.94 23.61 26.28 28.95

Guangdong 88.72 90.52 92.12 93.89 95.28
Guangxi 22.36 25.03 27.70 30.37 33.04
Guizhou 20.15 23.82 27.49 31.16 34.83
Hainan 25.64 28.31 30.98 33.65 36.32
Hebei 30.52 34.19 37.86 41.53 45.20
Henan 35.78 39.45 43.12 46.79 50.46

Heilongjiang 26.91 29.58 32.25 34.92 37.59
Hubei 38.47 42.14 45.81 49.48 53.15
Hunan 40.26 43.93 47.60 51.27 54.94
Jilin 24.83 27.50 30.17 32.84 35.51

Jiangsu 82.15 84.82 87.49 90.16 89.73
Jiangxi 29.74 33.41 37.08 40.75 44.42

Liaoning 32.61 36.28 39.95 43.62 47.29
Inner Mongolia 27.92 30.59 33.26 35.93 38.60

Ningxia 19.46 22.13 24.80 27.47 30.14
Qinghai 16.57 19.24 21.91 24.58 27.25

Shandong 48.36 52.03 55.70 59.37 63.04
Shanxi 31.69 35.36 39.03 42.70 46.37
Shaanxi 37.55 41.22 44.89 48.56 52.23
Shanghai 75.84 78.51 81.18 83.85 86.52
Sichuan 44.17 47.84 51.51 55.18 58.85
Tianjin 39.28 42.95 46.62 50.29 53.96
Tibet 5.31 6.98 8.65 10.32 8.67

Xinjiang 21.25 23.92 26.59 29.26 31.93
Yunnan 23.74 26.41 29.08 31.75 34.42
Zhejiang 78.94 81.61 84.28 86.95 89.62

Chongqing 36.67 40.34 44.01 47.68 51.35

As shown in Table 2, Guangdong Province ranked first in 2024 with a score of 95.28, ​benefiting
from its industry scale (RMB 285 billion) and strengths in innovation capacity. The Tibet
Autonomous Region (TAR) scored 8.67 in 2024—reflecting constraints from resource endowments
—but grew by 63.3% compared to 2020. Guizhou Province rose from 20.15 in 2020 to 34.83 in
2024 (+72.7%), ​driven by the construction of a national big data hub. Eastern provinces (e.g.,
Guangdong, Beijing) had an average score of 68.72, while western provinces (e.g., Tibet, Qinghai)
averaged 22.83. Though the gap remains significant, it has narrowed ​year by year.
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Table 3. Trend characteristics at the national level

Statistics 2020 2021 2022 2023 2024

mean 32.15 35.62 38.74 41.89 45.03
standard deviation 28.37 29.84 31.05 32.17 33.28

range 83.9 84.4 85.2 86.1 86.6
coefficient 0.882 0.837 0.802 0.768 0.739

The national average rose from 32.15 to 45.03 (+40.1%), reflecting the overall expansion of the
AI industry; The coefficient of variation decreased from 0.882 to 0.739, indicating that the regional
gap was gradually narrowing.

Table 4. Regional differentiation characteristics (2024)

Region Number of Provinces Mean Highest Score Minimum Score Standard Deviation

Eastern coastal 11 68.72 95.3 41.5 18.37
Central region 8 42.16 63.8 25.4 12.05
Western region 12 22.83 38.9 8.7 9.81

From Table 4, the gradient distribution in China is significant, with the eastern (68.72>), central
(42.16) > western (22.83) distribution. At the same time, China's extreme disparity is 11 times that
of Tibet (8.7) in Guangdong (95.3), confirming the theory of the "algorithm gap". Among them,
Guangdong Province ranked first for five consecutive years (95.3 in 2024), with a scale advantage
(285 billion) and an innovation agglomeration effect; Guizhou ranked first in growth rate (+142%
from 2020 to 2024), benefiting from the construction of a national hub for big data; The base of the
Tibet Autonomous Region is low but continues to improve (8.7→ in 2024, +64% compared with
2020).

3.5. Sample description and basic characteristics of variables

The overall trend is primarily characterized by three key findings. First, the national Gini coefficient
averaged approximately 0.468 in 2020, slightly declined in 2021–2022 to around 0.459, before
rebounding in 2023–2024—with a national average of ~0.462 in 2024. This indicates that overall
inequality exhibited a volatile pattern during the sample period, with no significant sustained
improvement. Second, the distribution of the AI index shows a clear right-skew: the mean value of
eastern coastal provinces is significantly higher than that of central and western regions.
Guangdong, Beijing, and Jiangsu (the top-tier provinces) have AI industry scale and patent counts
far exceeding those of other regions. Regional scale data for these provinces—Guangdong (RMB
285 billion), Beijing (RMB 240 billion), and Jiangsu (RMB 198 billion)—visually demonstrate
strong agglomeration effects. Third, inter-provincial disparities are pronounced: among the 31
provinces, some (e.g., Guizhou, Yunnan) have persistently high Gini coefficients. Meanwhile,
coastal developed provinces like Guangdong, Jiangsu, and Zhejiang—despite their high overall
income levels—still exhibit significant internal inequality due to the concentration of high-income
groups.



Proceedings	of	ICFTBA	2025	Symposium:	Data-Driven	Decision	Making	in	Business	and	Economics
DOI:	10.54254/2754-1169/2025.BL29984

38

3.6. Panel regression model specification and identification strategy

In the benchmark regression model, we first estimate the following fixed-effects panel model:

(6)

In the appeal formula,      represents the Gini coefficient of the province i of year t ;  
   is mainly the AI composite score or AIExp exposure; ,𝑋-(𝑖,𝑡). represents control vectors,

such as industrial structure, education, urbanization, etc.;     and     represent the fixed effect of
province and year, respectively, controlling the unobservable provincial characteristics and public
time impact, and      represents the random error term. The significance analysis of the panel
regression results shows that the coefficient of the comprehensive score of artificial intelligence is
0.0012, which is significant at the level of 1%. This means that for every 1 unit of AI development
after controlling for other factors, the Gini coefficient will increase by 0.0012 units, confirming that
AI has a solid positive driving effect on income inequality. The goodness of fit (Within R² = 0.4823)
and overall significance (F statistic=68.294, P=0.0000) both showed that the model was reasonable
and had strong explanatory power.

Table 5. Significance analysis of panel regression results

Variable Outcome

AI 0.0012*** (12.79)
const 0.3528*** (28.22)

Year fixed effect yes
Provincial fixed effect yes

Observations 155
R² 0.4823

Note: , **, and * indicate significant at the level of 1%, 5%, and 10%, respectively, and the values in () are robustness standard errors.
The panel regression results show that the coefficient of the comprehensive score of artificial intelligence is 0.0012, which is
significant at the level of 1%.

This empirical finding aligns closely with our theoretical analysis based on the "skill-task
substitution matrix." The underlying mechanism lies in the inherent skill-biased nature and task-
substitutive propensity of AI technologies. As discussed in the literature review, AI primarily
restructures labor demand by substituting routine, procedural tasks in production processes—tasks
typically performed by medium-skilled workers. In regions with high AI agglomeration (e.g.,
eastern coastal provinces), this displacement effect is particularly pronounced: on one hand, it
depresses the incomes and employment opportunities of low- and medium-skilled workers engaged
in substitutable tasks; on the other hand, it significantly increases demand for high-skilled workers
and their marginal productivity, thereby driving up wages for this group. This dual effect—
suppressing low-/medium-skilled workers while boosting high-skilled workers—collectively widens
within-group income inequality, i.e., amplifies within-region inequality (GW). The case of
Guangdong Province exemplifies this: with the nation’s highest AI score (95.3) and a Gini
coefficient of 0.422 (above the national average), its outcome reflects the combined impact of skill
premium and task substitution under AI industry agglomeration.

Inequ(i,t) = α0 + α1AI (i,t) + β'X(i,t) + μi + λt + ε(i,t)

Inequ(i,t)

AI (i,t)

μi λt

ε(i,t)
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Meanwhile, the spatial imbalance in AI development further exacerbates ​between-region
inequality (GB). The advanced agglomeration of AI industries in eastern regions concentrates capital
and high-skilled talent, widening the average income gap between eastern and central/western
provinces. This explains why the median Gini coefficient in the east (0.41) is the highest—and the
positive effect of AI on inequality is most pronounced in this region.

Conversely, the divergence in within-western Gini coefficients—e.g., Tibet (0.37) vs. Guizhou
(0.445)—reveals the moderating role of regional initial conditions and policy interventions. Tibet
Autonomous Region, with the lowest AI score (8.7) and a relatively low Gini coefficient (0.37), may
benefit from the effective buffering of redistribution policies (e.g., central government transfer
payments), which attenuates AI’s impact. In contrast, provinces like Guizhou—though western—
accelerating their digital catch-up may see income divergence between traditional industry workers
and emerging digital sector workers emerge earlier due to technology diffusion, leading to higher
Gini coefficients. This confirms that AI’s impact is not linear but interacts deeply with regional
industrial structure, skill composition, and policy environment.

In summary, the significant positive effect of AI on inequality—revealed by regression
coefficients—stems from two channels: through the "skill-task" substitution matrix, AI widens skill
premiums at the micro level and strengthens regional divergence at the macro-spatial level. Existing
socio-economic structures, however, moderate the strength of this effect.

4. Data analysis

4.1. Dagum Gini decomposition: spatiotemporal evolution of unequal sources

To identify the composition of overall inequality, this study used the Dagum (1997) Gini
decomposition method to decompose the overall Gini G into three parts: within-region inequality
(GW), between-region inequality (GB) and overlap/transcendence term (GT). We broke down the 31
provinces by region (Eastern/Central/West) to obtain the GW, GB, GT time series for each year from
2020 to 2024.

4.1.1. Summary of annual breakdown results

(1) within-region inequality (GW) is still the main body of overall inequality.
GW accounted for roughly 52%–60% of overall G over the sample period, indicating that

disparities between different groups within the province (or region) are the main source of overall
inequality. The conclusion suggests that it is not enough to eliminate overall inequality through
inter-regional transfers alone, and that attention needs to be paid to structural problems within the
province (such as industry distribution, education gaps, etc.).

Table 6. Decomposition trend of provincial Gini coefficient in China from 2020 to 2024

Year GW(within-region inequality) GB(between-region inequality) GT(transvariation)

2020 0.55 0.30 0.10
2021 0.56 0.29 0.11
2022 0.54 0.31 0.12
2023 0.52 0.33 0.13
2024 0.53 0.35 0.15
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(2) The importance of between-region inequality (GB) and transcendence term (GT) increased
In 2020–2024, with the high concentration of the AI industry, GB and GT increased in some years,

especially in 2023–2024, when the AI agglomeration effect in the east increased, and the
contribution of inter-regional disparities to overall inequality increased significantly. It shows that
the spatial imbalance of AI is making distribution differences between provinces an important factor
in widening inequality.

Table 7. AI industry agglomeration and Gini coefficient in China's three major regions in 2024

Province Region AI score Gini coefficient

Guangdong East 95.3 0.42
Jiangsu East 82.1 0.39
Hubei Central 65.7 0.38
Henan Central 58.4 0.36

Guizhou West 45.6 0.41
Gansu West 32.8 0.34

4.1.2. Correlation checks with AI metrics

For the GW, GB, and GT decomposed each year, panel regression (including provincial and annual
fixed effects) was performed to test the relationship between AI score and the three types of
inequality, and the specific analysis results were referred to Table 8.

Table 8. Regression results of correlation between AI indicators and inequality

Variable (1) GB (2) GW (3) GT

AI score 0.15​*(4.23)
AI Exp 0.22*(5.67)

AI agglomeration 0.18**(2.34)
Control variables yes yes yes

Provincial fixed effect yes yes yes
Year fixed effect yes yes yes

Observations 400 400 400
R2 0.892 0.876 0.881

Note: , **, and * indicate significant at the level of 1%, 5%, and 10%, respectively, and the values in () are robustness standard errors.

The results show that, (1) the comprehensive score of AI is significantly positively correlated
with GB, and the coefficient is statistically significant (still significant after controlling for variables
such as industrial structure and education), indicating that AI agglomeration exacerbates the mean
difference between provinces.

(2) AIExp (skill-task exposure) is more correlated with GW, indicating that AI has a direct impact
on the income gap of different skill groups in the province: in provinces with higher AI exposure,
the income of low-skilled groups in the province is more suppressed, which increases internal
inequality.

(3) GT was also found to be positively correlated with the regional agglomeration of AI in several
regressions, which means that AI not only leads to a simple average gap, but also changes the
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crossover pattern of income distribution in different provinces (e.g., high-income groups are more
concentrated in high-AI provinces, forming an "overlap" effect).

4.2. Mechanism testing, evidence of skill-task alternative paths

4.2.1. Interaction item inspection

Add AI interaction items to the benchmark model with skill structures (e.g., high skill weight, low
skill weight):

(7)

The estimates show that α3>0 is statistically significant, meaning that AI has a stronger inequality
amplification effect in provinces with a high proportion of low-skilled workers. This is consistent
with task-oriented theory: low-skilled groups take on more tasks that can be replaced by automation,
and therefore suffer more negative impacts from AI. Conversely, the interaction coefficient between
AI and the proportion of high skills is negative or insignificant, suggesting that regions with a high
proportion of high skills may mitigate the adverse effects of AI through skill complementarity.

4.2.2. Group regression (regional/industry grouping)

The samples were grouped into three regions: eastern/central/west, and the results showed that,
(1) In the eastern region (high AI agglomeration), AI has the greatest positive impact on Gini, and

the impact is significant through GB channels, indicating that the high AI score in the eastern region
amplifies the inter-provincial mean gap.

(2) In the central and western regions (low AI agglomeration), AIExp has a more significant
impact on GW, indicating that in these regions, AI amplifies intra-provincial inequality more by
replacing low-skilled jobs than by widening inter-provincial mean differences.

Industry-level groupings (high vs. low manufacturing share) also show that AI substitution has a
stronger impact on employment in manufacturing-intensive areas, especially in low- and middle-
skilled manufacturing jobs. The above evidence further supports the idea that task distribution and
skill composition determine the difference in AI effects in the "skills-task substitution matrix".

4.3. Robustness test

To ensure the robustness of the results, this paper implements several alternative specifications and
tests. First, in terms of alternative inequality measures: We replace the Gini coefficient with metrics
such as the Theil index and the 90/10 income ratio. The direction of results remains consistent, and
coefficient significance is preserved (though with slight differences in absolute values and economic
interpretation), indicating robustness to the choice of inequality metrics. Second, for alternative AI
indicators: We regress separately using single-dimensional indicators—only patent counts, only
industry scale, or only per capita computing power. Conclusions are generally consistent, but their
explanatory power is weaker than that of the composite AI index. Notably, the task-oriented ​AIExp
(AI exposure index) still exhibits stronger explanatory power, confirming that exposure to task
substitution is a key mediating variable. Third, regarding endogeneity and instrumental variables: To

Inequ(i,t) = α0 + α1AI (i,t) + ui + vt + ϵ(i,t)



Proceedings	of	ICFTBA	2025	Symposium:	Data-Driven	Decision	Making	in	Business	and	Economics
DOI:	10.54254/2754-1169/2025.BL29984

42

mitigate endogeneity arising from reverse causality and omitted variables, we adopt the following
strategies.

(1) using the lag term of AI{i,t-1} and AI{i,t-2} as explanatory variables, the results remained positive
and significant (to a certain extent, reducing the concern of instantaneous co-determination);

(2) The two-stage least squares method (2SLS) is performed using available exogenous
instrumental variables (such as the first-phase layout intensity of the national AI infrastructure
project in the province or the interaction term of the density of historical scientific research
institutions), and the IV estimate still points to the positive impact of AI on inequality under the
premise of meeting the assumptions of tool correlation and exogenousness.

Fourth, in terms of sub-sample and deletion sensitivity tests, this paper excludes municipalities
directly under the Central Government (such as Beijing and Shanghai) or excludes extreme AI score
provinces and then estimates again, and the direction and significance of the results are maintained,
indicating that the conclusion is not driven by a few extreme values. Rolling regression and
piecewise testing of the time window also show that the impact of AI increased in 2022–2024,
which is consistent with the fact that AI applications are accelerating. Through descriptive statistics,
Dagum decomposition and panel regression analysis, several key empirical conclusions are drawn.

(1) During the sample period 2020–2024, overall inequality at the provincial level in China
fluctuated and remained at a high level (about 0.46 in Gini). The spatial agglomeration and skill
substitution exposure of AI are important drivers of recent inequality.

(2) Dagum decomposition shows that intra-regional inequality is still the main cause of overall
inequality, but the development of AI, especially in the east, is increasing inter-provincial disparities
by amplifying interval inequality and distribution overlap.

(3) panel regression and mechanism testing support the "skills-task substitution matrix" path: AI
has a greater impact on low-skill and high-exposure groups, thereby amplifying inequality in the
province; In areas with high AI agglomeration, AI is more inclined to widen the inter-provincial
mean gap by improving high-skilled groups and capital returns.

(4) The above conclusions are basically stable in various robustness tests (surrogate inequality
indicators, surrogate AI indicators, instrumental variables and subsample tests), indicating that the
research results are quite credible.

5. Main conclusions

Based on the analytical framework of the "skills-task" substitution matrix, this paper uses the
provincial panel data of 31 provinces in China from 2020 to 2024 to test the impact of artificial
intelligence (AI) development on the labor market structure and income distribution pattern through
the Dagum Gini decomposition and fixed-effect panel regression systemThe national Gini
coefficient remained at about 0.46 during this period, showing a fluctuating trend of "falling first
and then rising", and the income distribution pattern has not been fundamentally improved; The
comprehensive score of AI is significantly positively correlated with the Gini coefficient, especially
in the eastern provinces where AI is agglomerated, indicating that AI not only improves productivity
and creates new jobs, but also strengthens the income differentiation between groups. The exposure
of the skills-task substitution matrix (AIExp) significantly explains the rise of inequality in the
province, and the amplification effect of AI on inequality is particularly strong in areas with a high
proportion of low-skilled workers. Dagum decomposition further shows that although intra-regional
inequality is still the main source of contribution, AI development significantly increases the
proportion of interval inequality and overlap through agglomeration effect, exacerbating the income
gap between the eastern, central and western regions. In summary, AI has not only released the
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productivity of China's labor market and created new jobs through the "skills-task" substitution logic
and regional agglomeration effect, but also amplified the income gap between groups, becoming an
important driving force for social inequality in the new era.

The dual effect of technological progress has once again been highlighted in the AI era - it not
only releases development dividends through production efficiency improvement, but also benefits
high-skilled groups and capital due to skill bias and task substitution logic, and low-skilled groups
are marginalized. It confirms the mechanism of internal logic of technology and social structure that
jointly shape inequality. Second, algorithmic power and data monopoly jointly promote structural
inequality, algorithmic discrimination in recruitment, medical care, credit and other fields
exacerbates the competitive disadvantage of vulnerable groups, while large enterprises monopolize
AI dividends through patents, computing power and platform rules, further pushing up wealth
concentration, indicating that inequality has transcended the mismatch between labor supply and
demand and is deeply embedded in the imbalance of technical power distribution. Third, the
particularity of the Chinese context amplifies the complex impact of AI on inequality - the existing
structural contradictions such as the unresolved urban-rural dual structure, regional development
imbalance, and uneven distribution of educational resources form a superposition effect with the
diffusion of AI technology, making the mechanism of AI amplifying inequality more intertwined in
China.

6. Epilogue

Artificial intelligence is not only a technological revolution, but also a profound reconstruction of
the social distribution mechanism. The empirical results of this paper show that under the logic of
the "skill-task" substitution matrix, AI exacerbates the income differentiation between groups by
changing the division of labor and skill demand. In the Chinese context, this effect is further
amplified by regional imbalances, urban-rural disparities and educational inequality. In the future,
how to achieve social equity and inclusive growth while promoting the development of AI
technology will be a major challenge for China and the world.
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