References
[1]. Russell, S., & Norvig, P. (2020). *Artificial intelligence: A modern approach* (4th ed.). Pearson.
[2]. McCulloch, W. S., & Pitts, W. (1943). A logical calculus of the ideas immanent in nervous activity. Bulletin of Mathematical Biophysics, 5, 115–133.
[3]. Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning representations by back-propagating errors. Nature, 323(6088), 533–536. https: //doi.org/10.1038/323533a0
[4]. LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521, 436–444 (2015). https: //doi.org/10.1038/nature14539
[5]. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L., & Polosukhin, I. (2017). Attention is all you need. *Advances in Neural Information Processing Systems, 30*, 5998-6008.
[6]. Radford, A., Narasimhan, K., Salimans, T., & Sutskever, I. (2018). Improving language understanding by generative pre-training. OpenAI. https: //cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf
[7]. Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2019). BERT: Pre-training of deep bidirectional transformers for language understanding. Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), 4171–4186.
[8]. Jensen, M. C., & Meckling, W. H. (1976). Theory of the firm: Managerial behavior, agency costs and ownership structure. *Journal of Financial Economics, 3*(4), 305-360. https: //doi.org/10.1016/0304-405X(76)90026-X
[9]. Ang, J. S., Cole, R. A., & Lin, J. W. (2000). Agency costs and ownership structure. The Journal of Finance, *55*(1), 81–106.
[10]. Johnson, S., La Porta, R., Lopez-de-Silanes, F., & Shleifer, A. (2000). Tunneling. American Economic Review, 90(2), 22-27.
[11]. Chui, M., Manyika, J., & Woetzel, J. (2018). Notes from the AI frontier: Applications and value of deep learning. McKinsey Global Institute.
[12]. Kiron, D., Shockley, R., Kruschwitz, N., & Haydock, M. (2017). Reshaping business with artificial intelligence: Closing the gap between ambition and action. MIT Sloan Management Review.
[13]. McAfee, A., Brynjolfsson, E., Davenport, T. H., Patil, D., & Kaak, P. (2019). Artificial intelligence: The next digital frontier? McKinsey Global Institute.
[14]. Westerman, G., Bonnet, D., & McAfee, A. (2018). Leading digital: Turning technology into business transformation. MIT Press.
[15]. Alder, S. (2023). Artificial intelligence and managerial overconfidence (Working Paper No. 2023-154). Becker Friedman Institute for Economics at the University of Chicago. https: //bfi.uchicago.edu/working-paper/2023-154/
[16]. Jensen, M. C. (1986). Agency costs of free cash flow, corporate finance, and takeovers. American Economic Review.
[17]. Begenau, J., Farboodi, M., & Veldkamp, L. (2018). Big data in finance and the growth of large firms. Journal of Monetary Economics.
[18]. Cao, S., Liu, J., & Liu, Y. (2023). How does corporate use of artificial intelligence affect audit fees? https: //doi.org/10.2139/ssrn.4582663
[19]. Huang, J., Li, K., & Shi, W. (2024). Strategic disclosure of AI investment: A tool for impression management? https: //doi.org/10.2139/ssrn.4698031
[20]. Zhao, Y., et al. (2021). Corporate innovation and executive perks: Evidence from China. Journal of Corporate Finance.
[21]. Jiang, G., Lee, C. M. C., & Yue, H. (2010). Tunneling through intercorporate loans: The China experience. Journal of Financial Economics, *98*(1), 1–20.