References
[1]. Chen, C. P., & Zhang, C. Y. (2014). Data-intensive Applications, Challenges, Techniques and Technologies: A Survey on Big Data. Information Sciences, 275, 314-347.
[2]. Benjamini, Y., & Hochberg, Y. (1995). Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. Journal of the Royal Statistical Society: Series B, 57(1), 289-300.
[3]. Hastie, T., Tibshirani, R., & Friedman, J. (2009). The Elements of Statistical Learning: Data Mining, Inference, and Prediction (2nd ed.). Springer.
[4]. Johnstone, I. M. (2001). On the Distribution of the Largest Eigenvalue in Principal Components Analysis. Annals of Statistics, 29(2), 295-327.
[5]. Fan, J., & Li, R. (2001). Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties. Journal of the American Statistical Association, 96(456), 1348-1360.
[6]. Aggarwal, C. C., Hinneburg, A., & Keim, D. A. (2001). On the Surprising Behavior of Distance Metrics in High Dimensional Space. In Database Theory-ICDT 2001 (pp. 420-434). Springer.
[7]. Golub, G. H., & Van Loan, C. F. (2013). Matrix Computations (4th ed.). Johns Hopkins University Press.
[8]. Bottou, L., & Bousquet, O. (2008). The Tradeoffs of Large Scale Learning. In Advances in Neural Information Processing Systems (pp. 161-168).
[9]. Benjamini, Y., & Yekutieli, D. (2001). The Control of the False Discovery Rate in Multiple Testing under Dependency. Annals of Statistics, 29(4), 1165-1188.
[10]. Storey, J. D., Taylor, J. E., & Siegmund, D. (2004). Strong Control, Conservative Point Estimation and Simultaneous Conservative Consistency of False Discovery Rates: A Unified Approach. Journal of the Royal Statistical Society: Series B, 66(1), 187-205.
[11]. Barber, R. F., & Candès, E. J. (2015). Controlling the False Discovery Rate via Knockoffs. Annals of Statistics, 43(5), 2055-2085.
[12]. Hoerl, A. E., & Kennard, R. W. (1970). Ridge Regression: Biased Estimation for Nonorthogonal Problems. Technometrics, 12(1), 55-67.
[13]. Tibshirani, R. (1996). Regression Shrinkage and Selection via the Lasso. Journal of the Royal Statistical Society: Series B, 58(1), 267-288.
[14]. Bickel, P. J., Ritov, Y., & Tsybakov, A. B. (2009). Simultaneous analysis of lasso and Dantzig selector. Annals of Statistics, 37(4), 1705-1732.
[15]. Robbins, H., & Monro, S. (1951). A Stochastic Approximation Method. Annals of Mathematical Statistics, 22(3), 400-407.
[16]. Blei, D. M., Kucukelbir, A., & McAuliffe, J. D. (2017). Variational Inference: A Review for Statisticians. Journal of the American Statistical Association, 112(518), 859-877.
[17]. Hoffman, M., Blei, D. M., Wang, C., & Paisley, J. (2013). Stochastic Variational Inference. Journal of Machine Learning Research, 14(1), 1303-1347.