References
[1]. Lee, T. S. and Lin, H.Y. (2009). The pricing of structured notes with credit risk. Investment Management and Financial Innovations, 6 (4), 221-232
[2]. Mccrickerd, R. and Pakkanen, M. S. (2018). Turbocharging Monte Carlo pricing for the rough Bergomi model. Quantitative Finance, 18(11), 1877-1886
[3]. Droms, W. G. and Strauss, S. N. (2012). Structured Notes in a Balanced Portfolio: Enhancing Returns with Tail Risk Protection. Journal of Financial Planning, 25 (11), 68-75
[4]. Sabrina, T. W. (2024). Structured Notes: A nontraditional, customizable tool that’s useful for retiring clients. Source Media dba Arizent.
[5]. Sharma, A., Chen, F., Noh, J., Dejesus, J. and Schlener, M. (2024). Hedging and Pricing Structured Products Featuring Multiple Underlying Assets. Conference acronym’ICAIF, 14 (17), 1-7.
[6]. Li, H. (2023). Case Analysis of HSBC's "Profit to Flexibility" Structured Deposit Product. Journal of Financial Research, 5 (518), 187-202.
[7]. Kim, C. and Jeong, Y. (2023). A Practical Monte Carlo Method for Pricing Equity-Linked Securities with Time-Dependent Volatility and Interest Rate. Journal of Computational Finance.10.1007/s10614-023-10394-3.
[8]. Fang, Y., Zhang, Y. X., Liu, J. Z. and Zhang J. (2018). A study of Pricing for Structured Financial Products Linked with Multi-Asset. Journal of Fudan University (Natural Science), 57(5): 554-564, 579.
[9]. Gao, Y., Wang, J. H. and Yang, A. J. (2011). Estimation on Portfolio Risk via Time-varying T-copula and Monte-carlo Method. Chinese Journal of Management Science, 19(2): 10-15.
[10]. Smith, J. and Johnson, M. (2023). Structured Products in Retirement Portfolios: A Mean- Variance Analysis. Journal of Retirement Planning, 10 (2), 45-68.
[11]. John, C. H. (2023). Options, Futures, and Other Derivatives. Pearson Education, 108-112.