References
[1]. Statista. (2023, July 27). E-commerce worldwide – statistics & facts. Statista. https: //www.statista.com/topics/871/online-shopping/?srsltid=AfmBOorKJVcT-rm55E8w9Oyx66yIoY2ERgZg-7pPWH-iIUEn1IKXCkpK#topicOverview.
[2]. Ivanov, D., & Dolgui, A. (2020). Viability of intertwined supply networks: Extending the supply chain resilience angles towards survivability. International Journal of Production Research, 58(10), 2904–2915. https: //doi.org/10.1080/00207543.2020.1750727.
[3]. Mehrotra, P., Fu, M., Huang, J., Mahabhashyam, S. R., Liu, M., Yang, M. (A.), Wang, X., Hendricks, J., Moola, R., Morland, D., Krozier, K., Nie, T., Sun, O., Adbesh, F., Zhang, T., Shrivastav, M., Xu, J., Rajan, S., Turner, M., Tucker, S., Jones, M. D., Xiao, F., Bhargava, A., Deshpande, D., Mokashi, S., Johnson, T., Raman, C., Ferguson, M., Keller, M., Donahue, S., Bhutta, R., Akella, M., Musani, P., Venkatesan, S., Guggina, D., & Furner, J. (2024). Optimizing Walmart’s supply chain from strategy to execution. INFORMS Journal on Applied Analytics, 54(1), 5–19. https: //doi.org/10.1287/inte.2023.0093.
[4]. Raman, S., Patwa, N., Niranjan, I., Ranjan, U., Moorthy, K., & Mehta, A. (2018). Impact of big data on supply chain management. International Journal of Logistics Research and Applications, 21(6), 579–596. https: //doi.org/10.1080/13675567.2018.1459523.
[5]. Yang, M., Zhao, L., Chen, J., & Xu, X. (2023). Supply chain risk management with machine learning during the COVID-19 pandemic. Transportation Research Part E: Logistics and Transportation Review, 174, 102947. https: //pmc.ncbi.nlm.nih.gov/articles/PMC9715461/.
[6]. Mehrabi, N., Morstatter, F., Saxena, N., Lerman, K., & Galstyan, A. (2021). A survey on bias and fairness in machine learning. ACM Computing Surveys, 54(6), 1–35. https: //doi.org/10.1145/3457607.
[7]. National Bureau of Statistics of China. (2023, July 30). Operation of China’s Purchasing Manager Index in July 2023. National Bureau of Statistics of China. http: //www.stats.gov.cn/sj/zxfb/202307/t20230731_1941624.html.
[8]. Zhang, D., Pee, L. G., & Cui, L. (2021). Artificial intelligence in E-commerce fulfillment: A case study of resource orchestration at Alibaba’s Smart Warehouse. International Journal of Information Management, 57, Article 102304. https: //doi.org/10.1016/j.ijinfomgt.2020.102304.
[9]. Gunasekaran, A., Papadopoulos, T., Dubey, R., Wamba, S. F., Childe, S. J., Hazen, B., & Akter, S. (2017). Big data and predictive analytics for supply chain and organizational performance. Journal of Business Research, 70, 308-317. https: //doi.org/10.1016/j.jbusres.2016.08.004.
[10]. Choi, T. M. (2021). Risk analysis in logistics systems: A research agenda and future directions. Transportation Research Part E: Logistics and Transportation Review, 145, 102170. https: //doi.org/10.1016/j.tre.2020.102170.
[11]. Gölzer, P., & Fritzsche, A. (2017). Data-driven operations management: Organizational implications of the digital transformation in industrial practice. Production Planning & Control, 28(16), 1332–1343. https: //doi.org/10.1080/09537287.2017.1375148.
[12]. Ivanov D. (2021). Exiting the COVID-19 pandemic: after-shock risks and avoidance of disruption tails in supply chains. Annals of operations research, 1–18. Advance online publication. https: //doi.org/10.1007/s10479-021-04047-7.
[13]. Baharudin, H. (2023). AI in e-commerce warehouse management: Enhancing operational efficiency, ensuring inventory precision, and strengthening security measures. SSRN Electronic Journal. https: //doi.org/10.2139/ssrn.5050072.
[14]. Kshetri, N. (2018). The economics of AI-driven cybersecurity in e-commerce. IT Professional, 20(6), 73–77. https: //ieeexplore.ieee.org/document/8617758.