References
[1]. Animah, I. (2024). Application of bayesian network in the Maritime Industry: Comprehensive Literature Review. Ocean Engineering, 302, 117610. https: //doi.org/10.1016/j.oceaneng.2024.117610
[2]. Brochu, E., Cora, V. M., & De Freitas, N. (2010). A Tutorial on Bayesian Optimization of Expensive Cost Functions, with Application to Active User Modeling and Hierarchical Reinforcement Learning. https: //doi.org/10.48550/arXiv.1012.2599
[3]. Ozaki, V. A. (2008). Pricing farm-level Agricultural Insurance: A bayesian approach. Empirical Economics, 36(2), 231–242. https: //doi.org/10.1007/s00181-008-0193-2
[4]. Li, Z., Zhu, X., Liao, S., Yin, J., Gao, K., & Liu, X. (2024). Integrating bayesian network and cloud model to probabilistic risk assessment of maritime collision accidents in China’s coastal Port Waters. Journal of Marine Science and Engineering, 12(12), 2113. https: //doi.org/10.3390/jmse12122113
[5]. Zerrouki, H., & Smadi, H. (2016). Bayesian belief network used in the chemical and Process Industry: A review and Application. Journal of Failure Analysis and Prevention, 17(1), 159–165. https: //doi.org/10.1007/s11668-016-0231-x
[6]. Szczepaniak, A. (2025, May 12). Insurance pricing 101: Understanding the fundamentals of rate-making. Shaped Thoughts. https: //shapedthoughts.io/insurance-pricing-101-understanding-the-fundamentals-of-rate-making/
[7]. Gunawan, C., Faizal, M. I., & Susyanto, N. (2024). Adapting the insurance pricing model for distribution channel expansion using the Bayesian generalized Linear Model. Operations Research and Decisions, 34(4). https: //doi.org/10.37190/ord240404
[8]. Sisson, S. A., Fan, Y., & Beaumont, M. A. (2018). Overview of ABC. Handbook of Approximate Bayesian Computation, 3–54. https: //doi.org/10.1201/9781315117195-1
[9]. Calcetero Vanegas, S., Badescu, A. L., & Lin, S. X. (2024). Effective experience rating for large insurance portfolios via Surrogate Modeling. Insurance: Mathematics and Economics, 118, 25–43. https: //doi.org/10.1016/j.insmatheco.2024.05.004
[10]. Kwon, Y., Won, J.-H., Kim, B. J., & Paik, M. C. (2020). Uncertainty quantification using Bayesian neural networks in classification: Application to biomedical image segmentation. Computational Statistics & amp; Data Analysis, 142, 106816. https: //doi.org/10.1016/j.csda.2019.106816
[11]. Fortuin, V. (2022). Priors in bayesian deep learning: A Review. International Statistical Review, 90(3), 563–591. https: //doi.org/10.1111/insr.12502
[12]. Wenzel, F., Roth, K., Veeling, B. S., Świątkowski, J., Tran, L., Mandt, S., Snoek, J., Salimans, T., Jenatton, R., & Nowozin, S. (2020). How Good Is the Bayes Posterior in Deep Neural Networks Really? https: //doi.org/10.48550/arXiv.2002.02405
[13]. Silvestro, D., & Andermann, T. (2020). Prior Choice Affects Ability of Bayesian Neural Networks to Identify Unknowns. https: //doi.org/10.48550/arXiv.2005.04987
[14]. Zhang, Y., Ji, L., Aivaliotis, G., & Taylor, C. (2024). Bayesian cart models for insurance claims frequency. Insurance: Mathematics and Economics, 114, 108–131. https: //doi.org/10.1016/j.insmatheco.2023.11.005
[15]. Hill, J., Linero, A., & Murray, J. (2020). Bayesian additive regression trees: A review and look forward. Annual Review of Statistics and Its Application, 7(1), 251–278. https: //doi.org/10.1146/annurev-statistics-031219-041110
[16]. Mongwe, W. T., Mbuvha, R., & Marwala, T. (2025). Bayesian neural network inference of Motor Insurance claims. Bayesian Machine Learning in Quantitative Finance, 205–223. https: //doi.org/10.1007/978-3-031-88431-3_10
[17]. Pang, S., & Choi, C. (2022). Data-Driven Parametric Insurance Framework Using Bayesian Neural Networks. https: //doi.org/10.48550/arXiv.2209.05307