References
[1]. Zhang, Y.Y., Qian, Y.H., Ma, G.S., Zheng, K.Y., Liu, G.Q. and Zhang, Q.F. (2024) Learning multi-task sparse representation based on fisher information. IEEE Transactions on Pattern Analysis and Machine Intelligence , 46 , 3210-3225
[2]. Alghamdi, O.A. and Agag, G. (2023) Boosting innovation performance through big data analytics powered by artificial intelligence use: An empirical exploration of the role of strategic agility and market turbulence. Journal of Business Research , 156 , 113200-113215
[3]. Jagatheesaperumal, S.K., Rahouti, M., Ahmad, K. and Guizani, M. (2022) The duo of artificial intelligence and big data for industry 4.0: Applications, techniques, challenges, and future research directions. IEEE Internet of Things Journal , 9 , 18500-18520
[4]. Unknown. (2024) Artificial intelligence-driven big data analytics for business intelligence in SaaS products. Information Systems Frontiers , 26 , 890-905
[5]. Song, Y.P., Cai, C.C., Ma, D.X., Li, C. and Zhu, M. (2023) Modelling and forecasting high-frequency data with jumps based on a hybrid nonparametric regression and LSTM model. Journal of Econometrics , 234 , 560-580
[6]. Rao, X., Shang, S., Jiang, R.H., Han, P. and Chen, L.S. (2025) Seed: Bridging sequence and diffusion models for road trajectory generation. IEEE Transactions on Intelligent Transportation Systems , 26 , 4500-4515
[7]. Unknown. (2023) Artificial intelligence integrated with big data analytics for enhanced marketing. Journal of Interactive Marketing , 62 , 1-18
[8]. Ding, C.J., Li, K., Chen, L.S. and Shang, S. (2025) Parallel online similarity join over trajectory streams. Data & Knowledge Engineering , 148 , 102100-102118
[9]. Li, X., Wang, H., Zhao, J. and Chen, Y. (2021) Deep learning for customer lifetime value prediction: A comparative study. Computational Economics , 58 , 1200-1225
[10]. Wang, Q., Li, J., Zhang, S. and Liu, M. (2022) Reinforcement learning for dynamic marketing budget allocation. Marketing Science , 41 , 850-875
[11]. Zhao, Y., Chen, W., Huang, Z. and Yang, L. (2021) Predictive maintenance in manufacturing: A deep learning approach. Journal of Manufacturing Systems , 59 , 300-320
[12]. Zhang, H. and Wang, L. (2022) Federated learning in financial fraud detection: A practical framework. Computers & Security , 112 , 102500-102518