References
[1]. Chouldechova, A. (2017).Fair prediction with disparate impact: A study of bias in recidivism prediction instruments. Big Data., 5(2): 153–163.
[2]. Dressel, J., & Farid, H. (2018). The accuracy, fairness, and limits of predicting recidivism. Science Advances., 4(1): eaao5580.
[3]. Gendreau, P., Little, T., & Goggin, C. (1996) A meta-analysis of the predictors of adult offender recidivism: What works! Criminology., 34(4): 575–608.
[4]. Hayes, B. (2018) Predicting criminal recidivism with R. https: //benhay.es/posts/predicting-criminal-recidivism-r/#top
[5]. Jeff, L., & Surya, M., & Lauren, K. (2016) How do we analyze the COMPAS recidivism algorithm. https: //www.propublica.org/article/how-we-analyzed-the-compas-recidivism-algorithm
[6]. Hosmer, D. W., & Lemeshow, S. (2000) Applied logistic regression (2nd ed.). Wiley. ISBN 978-0-471-35632-5.
[7]. Boyd, S., & Vandenberghe, L. (2004) Convex optimization. Cambridge University Press. ISBN 978-0-521-83378-3.
[8]. Cortes, C., & Vapnik, V. (1995) Support-vector networks. Machine Learning., 20(3): 273–297.
[9]. Awad, M., & Khanna, R. (2015) Support vector machines for classification. In Efficient learning machines. pp. 39–66.
[10]. Krishnan, S. (2021) Decision tree for classification: Entropy and information gain. Medium. https: //medium.com/codex/decision-tree-for-classification-entropy-and-information-gain-cd9f99a26e0d
[11]. Pennsylvania State University. (n.d.) 11.8.2 - Assessing the adequacy of the model | STAT 508. Online Learning, Penn State. https: //online.stat.psu.edu/stat508/lesson/11/11.8/11.8.2