Behavioral Bias in the Stock Market: Consequences for Investor Performance and Market Efficiency
Research Article
Open Access
CC BY

Behavioral Bias in the Stock Market: Consequences for Investor Performance and Market Efficiency

Hanwen Zhang 1*
1 Dulwich International High School Suzhou
*Corresponding author: summer.zhang26@stu.dulwich.org
Published on 9 September 2025
Journal Cover
AEMPS Vol.214
ISSN (Print): 2754-1177
ISSN (Online): 2754-1169
ISBN (Print): 978-1-80590-353-6
ISBN (Online): 978-1-80590-354-3
Download Cover

Abstract

Behavioral biases, such as overconfidence, loss aversion, confirmation bias, and anchoring, significantly distort individual decision-making processes. These biases lead to suboptimal portfolio performance, characterized by excessive trading, delayed loss realization, and inefficient information processing. At the market level, these biases aggregate into systemic anomalies like herding, overreaction, and momentum effects. These anomalies undermine market efficiency due to limits to arbitrage and the influence of noise trader sentiment. This paper examines the profound impact of behavioral biases on both investor performance and market efficiency, challenging the traditional financial theories that assume market rationality. Empirical evidence reveals significant negative impacts on investor returns and prolonged mispricing durations. These findings highlight the necessity for a multidisciplinary approach that integrates cognitive psychology and financial economics to better understand and address these pervasive issues in financial markets. By bridging these disciplines, this research aims to provide actionable insights for portfolio management and regulatory design, ultimately enhancing market efficiency and investor outcomes.

Keywords:

Behavioral Bias, Investor Performance, Market Efficiency, Stock Market

View PDF
Zhang,H. (2025). Behavioral Bias in the Stock Market: Consequences for Investor Performance and Market Efficiency. Advances in Economics, Management and Political Sciences,214,29-35.

References

[1]. NUNES, R. (2025). The Efficient Market Hypothesis as an Extension of Neoclassical Theory: A Theoretical and Empirical Critique. Journal of Economics, Finance and Accounting Studies, 7(4), 117-134.

[2]. Zahera, S. A., & Bansal, R. (2018). Do investors exhibit behavioral biases in investment decision making? A systematic review. Qualitative Research in Financial Markets, 10(2), 210-251.

[3]. Daniel, K., & Hirshleifer, D. (2015). Overconfident investors, predictable returns, and excessive trading. Journal of Economic Perspectives, 29(4), 61-88.

[4]. Fong, W. M. (2014). The lottery mindset: Investors, gambling and the stock market. Springer.

[5]. Adebambo, B. N., & Yan, X. (2018). Investor overconfidence, firm valuation, and corporate decisions. Management Science, 64(11), 5349-5369.

[6]. Akkaya, M. (2021). Behavioral portfolio theory. In Applying particle swarm optimization: new solutions and cases for optimized portfolios (pp. 29-48). Cham: Springer International Publishing.

[7]. Jäälinoja, J. (2025). Exploring Home Bias among Finnish Retail Investors: Behavioural and Demographic Insights.

[8]. Nguyen, A. P. N. (2024). Individual Sentiments and Collective Decisions: Cryptocurrencies as a prism for the wider market (Doctoral dissertation, Dublin City University).

[9]. Del Vicario, M., Scala, A., Caldarelli, G., Stanley, H. E., & Quattrociocchi, W. (2017). Modeling confirmation bias and polarization. Scientific reports, 7(1), 40391.

[10]. Blumenthal-Barby, J. S., & Krieger, H. (2015). Cognitive biases and heuristics in medical decision making: a critical review using a systematic search strategy. Medical decision making, 35(4), 539-557.

[11]. Haselton, M. G., Bryant, G. A., Wilke, A., Frederick, D. A., Galperin, A., Frankenhuis, W. E., & Moore, T. (2009). Adaptive rationality: An evolutionary perspective on cognitive bias. Social Cognition, 27(5), 733-763.

[12]. Campbell, S. D., & Sharpe, S. A. (2009). Anchoring bias in consensus forecasts and its effect on market prices. Journal of Financial and Quantitative Analysis, 44(2), 369-390.

[13]. Cen, L., Hilary, G., & Wei, K. J. (2013). The role of anchoring bias in the equity market: Evidence from analysts’ earnings forecasts and stock returns. Journal of Financial and Quantitative Analysis, 48(1), 47-76.

[14]. Rook, D. (2013). Paying Attention (Due) to Memory Structure: Rethinking Expertise in Financial Cognition. Available at SSRN 2336480.

[15]. Ludwig, A., & Zimper, A. (2013). A decision-theoretic model of asset-price underreaction and overreaction to dividend news. Annals of Finance, 9(4), 625-665.

[16]. Westermann, F., & Schunk, D. (2022). Rational expectations vs. behavioral biases: An empirical analysis of trading variability in international capital markets. Journal of Business and Economic Options, 5(4), 35-42.

[17]. Crompton, J. L. (2016). Implications of prospect theory for the pricing of leisure services. Leisure Sciences, 38(4), 315-337.

[18]. Han, J. (2010). A Model of Self-Reinforcing Financial Fads. Available at SSRN 1508888.

[19]. Konttinen, S. (2025). Testing for Herding in the Finnish Equity Market: A CSSD and CSAD Approach During Periods of Uncertainty.

[20]. Nelson, S. C., & Katzenstein, P. J. (2014). Uncertainty, risk, and the financial crisis of 2008. International organization, 68(2), 361-392.

[21]. Spyrou, S. (2013). Herding in financial markets: a review of the literature. Review of Behavioral Finance, 5(2), 175-194.

[22]. De Bondt, W. F., & Thaler, R. (1985). Does the stock market overreact?. The Journal of finance, 40(3), 793-805.

[23]. Jegadeesh, N., & Titman, S. (1993). Returns to buying winners and selling losers: Implications for stock market efficiency. The Journal of finance, 48(1), 65-91.

[24]. Chuang, W. I., & Lee, B. S. (2006). An empirical evaluation of the overconfidence hypothesis. Journal of Banking & Finance, 30(9), 2489-2515.

[25]. Cakici, N., Fabozzi, F. J., & Tan, S. (2013). Size, value, and momentum in emerging market stock returns. Emerging Markets Review, 16, 46-65.

[26]. Guo, H. (2006). Time-varying risk premia and the cross section of stock returns. Journal of Banking & Finance, 30(7), 2087-2107.

[27]. Nevin, J. A., Craig, A. R., Cunningham, P. J., Podlesnik, C. A., Shahan, T. A., & Sweeney, M. M. (2017). Quantitative models of persistence and relapse from the perspective of behavioral momentum theory: Fits and misfits. Behavioural processes, 141, 92-99.

[28]. Gromb, D., & Vayanos, D. (2010). Limits of arbitrage. Annu. Rev. Financ. Econ., 2(1), 251-275.

[29]. Daniel, K. D., Hirshleifer, D., & Subrahmanyam, A. (2001). Overconfidence, arbitrage, and equilibrium asset pricing. The Journal of Finance, 56(3), 921-965.

[30]. Verma, R., & Verma, P. (2007). Noise trading and stock market volatility. Journal of Multinational Financial Management, 17(3), 231-243.

[31]. Monyebodi, K. J. (2023). Investment Styles and Monetary Policy Shocks: Evidence from Advanced and Emerging Economies.

[32]. Malkiel, B. G. (2011, October). The efficient-market hypothesis and the financial crisis. In Rethinking finance: perspectives on the crisis (Proceedings of a conference). Russel Sage Foundation.

[33]. Bhanu, B. K. (2023). Behavioral finance and stock market anomalies: Exploring psychological factors influencing investment decisions. Commer. Econ. Manag, 23.

Cite this article

Zhang,H. (2025). Behavioral Bias in the Stock Market: Consequences for Investor Performance and Market Efficiency. Advances in Economics, Management and Political Sciences,214,29-35.

Data availability

The datasets used and/or analyzed during the current study will be available from the authors upon reasonable request.

About volume

Volume title: Proceedings of ICEMGD 2025 Symposium: Resilient Business Strategies in Global Markets

ISBN: 978-1-80590-353-6(Print) / 978-1-80590-354-3(Online)
Editor: Florian Marcel Nuţă Nuţă, Li Chai
Conference website: https://2025.icemgd.org/CAU.html
Conference date: 20 September 2025
Series: Advances in Economics, Management and Political Sciences
Volume number: Vol.214
ISSN: 2754-1169(Print) / 2754-1177(Online)