References
[1]. Jena, P. R., & Majhi, R. (2023). Are Twitter sentiments during COVID-19 pandemic a critical determinant to predict stock market movements? A machine learning approach. Scientific African, 19, e01480. https: //doi.org/10.1016/j.sciaf.2022.e01480
[2]. Li, H., & Hu, J. (2024). A hybrid deep learning framework for stock price prediction considering the investor sentiment of online forum enhanced by popularity. arXiv Preprint, arXiv: 2405.10584. https: //doi.org/10.48550/arXiv.2405.10584
[3]. Chandola, D., Mehta, A., Singh, S., Tikkiwal, V. A., & Agrawal, H. (2023). Forecasting directional movement of stock prices using deep learning. Annals of Data Science, 10(5), 1361-1378. https: //doi.org/10.1007/s40745-022-00432-6
[4]. Gu, W., Zhong, Y., Li, S., Wei, C., Dong, L., Wang, Z., & Yan, C. (2024). Predicting stock prices with FinBERT-LSTM: Integrating news sentiment analysis. ACM Transactions on Asian and Low-Resource Language Information Processing. https: //doi.org/10.1145/3605210
[5]. Zhang, X., Zhang, Y., Wang, S., Yao, Y., Fang, B., & Yu, P. S. (2023). Multimodal sentiment analysis in financial markets: A deep learning approach integrating text, price patterns, and market indicators. Expert Systems with Applications, 228, 120245. https: //doi.org/10.1016/j.eswa.2023.120245