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This study aims to compare the performance of the Ant Colony Optimization
(ACO) and Simulated Annealing (SA) algorithms in optimizing distribution routes for cold-
chain logistics of aquatic products. First, a multi-objective optimization model is constructed
with distribution cost, transportation time, and loss rate as core objectives, incorporating
temperature control and time window constraints. Constraint integration is achieved through
improved algorithm designs, such as the temperature deviation penalty term in ACO and the
dynamic penalty function in SA. Second, based on a simulation scenario with 21 nodes (1
distribution center and 20 customer points), systematic comparative experiments are
conducted on the two algorithms, focusing on core indicators including total driving
distance, time window violation, total cost, and product loss rate. The results show that the
SA algorithm performs better in comprehensive optimization indicators: the total cost is
1.87% lower than ACO, the product loss rate is reduced to 3.8%, the time window
satisfaction rate is increased to 88%, and the temperature constraint violation rate is only
0.5%, making it more suitable for strict temperature control scenarios of long-distance and
high-value aquatic products. The ACO algorithm, however, has an advantage in convergence
speed (reaching the optimal solution in 27 iterations) and computational efficiency, suitable
for dynamic route adjustment in small-to-medium distribution networks. The study suggests
that future research can explore hybrid optimization strategies of the algorithms and validate
the model's effectiveness in larger distribution networks, providing a quantitative basis for
algorithm selection in cold-chain logistics enterprises.

Cold-chain logistics for aquatic products, Distribution route optimization, Ant
Colony Optimization (ACO), Simulated Annealing (SA).

The demand for food supply from marine has increased due to the world population growth [1]. The
cold-chain transportation of aquatic products has also become the focus of attention. However,
aquatic food products pose significant challenges to maintain their quality due to their high
corrosion and strict fresh-keeping requirements [2]. Therefore, the transportation of aquatic products
is highly time-sensitive, posing enormous challenges to its logistics and distribution. These
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characteristics require a delicate balance among temperature control, delivery timeliness, and cost-
effectiveness, thus placing strict demands on the optimization of cold-chain logistics distribution
routes for aquatic products.

The optimization of cold-chain logistics distribution routes for aquatic products is a typical
Nondeterministic Polynomial-time hard problem [3]. Traditional Ant Colony Optimization (ACO)
and Genetic Algorithms (GA) often suffer from slow convergence and a tendency to get trapped in
local optimal solutions when dealing with large-scale complex scenarios [4]. In contrast, inspired by
the pheromone-based communication mechanism in ants' foraging process, ACO demonstrates
remarkable convergence and local search capabilities in path optimization. Applying improved ACO
to cold-chain logistics route planning has successfully reduced transportation costs and energy
consumption [5]. SA, by mimicking the solid annealing process, starts from a higher initial
temperature and gradually decreases the temperature parameter, combining probabilistic jumping
characteristics to randomly search for the global optimal solution of the objective function in the
solution space [6].

Current research in cold-chain logistics distribution has made certain progress. Scholars like
Wang et al. incorporated new improvements such as transportation costs, maximum vehicle load,
delivery distance, route restrictions, traffic conditions, and product temperature sensitivity into an
optimized cold-chain logistics distribution route model. They further integrated real-time traffic data
and dynamic temperature monitoring systems into the algorithm framework, enabling the model to
dynamically adjust routes in real time when facing sudden events such as road closures or extreme
weather [7, 8]. For example, in the optimized model, when a temperature-sensitive seafood product
is transported, the algorithm prioritizes routes with stable temperature control facilities and shorter
travel times, while dynamically recalculating paths based on real-time traffic updates to avoid delays
that could affect product quality.

Zhang et al., on the other hand, leveraged SA to address low-carbon optimization and traffic
impact issues in cold-chain logistics. Their research not only minimized carbon emissions by
optimizing vehicle routing but also considered the trade-off between delivery time and energy
consumption. By introducing a dynamic penalty function for temperature deviations, the model
ensures that temperature-sensitive products remain within safe thresholds throughout transportation
[9, 10]. For instance, in a case study involving live seafood transportation, the SA algorithm reduced
cargo loss rates by 12% while cutting carbon emissions by 8% compared to traditional routing
methods, demonstrating its dual efficiency in cost control and environmental sustainability.

However, most existing studies focus on single-algorithm applications, lacking systematic
comparisons of different algorithms’ adaptability to aquatic product logistics’ unique constraints,
such as multi-temperature zone requirements and real-time freshness decay models. In this study, to
address the characteristics of aquatic product logistics, a multi-objective optimization model
incorporating distribution cost is developed, transportation time and loss rate as core objectives was
constructed. By improving the ACO and SA algorithm, temperature control constraints and time
window restrictions were integrated into the algorithm design, and systematic comparative
experiments were carried out, so as to provide a basis for algorithm selection for aquatic product
cold-chain logistics enterprises and help the industry reduce costs, improve efficiency and achieve
sustainable development.
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2. Methods
2.1. Data sources and description

This paper assumes a cold-chain transportation enterprise for aquatic products has distribution data,
including the specific coordinates of one distribution center and twenty customer nodes, the demand
for aquatic products, and customer-specified delivery time windows. Additionally, temperature
control constraints are set at -18 to -5 degree centigrade, and transportation costs only consider
vehicle fuel consumption and labor costs.

2.2. Index selection and explanation

Aiming at the multi-constraint characteristics of cold-chain logistics for aquatic products, a multi-
objective optimization model is constructed with distribution cost, transportation time, and loss rate
as core objectives, while incorporating temperature control constraints and time windows
restrictions. The names, symbols, units, and explanations of each index are shown in Table 1.

Table 1. Attribute information

Index Syr{lbo Unit Explanation
e CN . .
Distribution cost C v Vehicle fixed cost and driving cost
Transportation P s
tIi)me T h Driving time between nodes and customer waiting time
. o Product loss ratio calculated based on duration of temperature deviation from
Loss ratio L %

threshold

Real-time temperature in refrigerated truck compartment must satisfy [ T » LTmin

]

Temperature range Temp °C

2.3. Model establishment
2.3.1. Symbol description

Table 2 provides explanations for the key symbols involved in the optimization model of cold-chain
logistics distribution routes for aquatic products.
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Table 2. Symbol explanation

Symbol Explanation
Lijk 0-1 variable: 1 if vehicle k travels from node ¢ to node j; 0 otherwise
n Total number of nodes (including distribution center and customer nodes)
m Total number of vehicles
dij Distance from node 7 tonode j (km)
tij Travel time from node ¢ tonode 7 Chour)
Cy Fixed cost per vehicle (CNY/vehicle)
C, Unit waiting cost per vehicle (CNY/h)
Qnmaz [Maximum load capacity of vehicles (kg)
a; Demand for aquatic products at customer node j (kg)
Temp Real-time temperature in refrigerated truck compartment (°C)
T T Lower and upper limits of temperature constraints
maw s S (°C, ranging from -18°C to -5°C)
E;, L; Start and end times of the time window for customer node 7 (h)
w1, Wy, W Weight coefficients of the objective function ( wy + ws + w3 =1 )
« Product temperature sensitivity coefficient
f (Temp) Temperature deviation function
tdew Duration of temperature deviation from the threshold

These symbols cover decision variables, network and vehicle parameters, cost-related parameters,
transportation and temperature control parameters, time window parameters, and objective function
weights, etc.
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2.3.2. Mathematical model
First, the author writes out the objective function:

minZ = w1C + wyT + wsL (1)

Among them, distribution cost: C' = >/, (C’ FHCad i D :Jcijktij) , transportation time:
T =301 > 051 D oher Tigrtij + g Li — E; , and loss ratio: L = a x f (Temp) X taes . Next,
analyzing the constraints of the linear programming;:

([ Tin < Temp < Tiae,
E; < a; < L,
> i1 4Tk < Qma,
Z?:l Tijp = 1, @)
Dic1 Tk — D51 Tigk = 0,
\ zik € {0,1}.

2.4. Algorithm introduction
2.4.1. Improved ant colony optimization

ACO algorithm achieves path optimization by simulating the pheromone - based foraging behavior
of ants. In nature, ants secrete pheromones during their movement. Over time, shorter or higher -
quality paths accumulate higher concentrations of pheromones, significantly increasing the
probability of subsequent ants choosing these paths. This mechanism forms a positive feedback
loop, enabling the ant colony to gradually converge to the optimal solution through continuous
exploration.

In view of the particularity of cold - chain logistics transportation scenarios, the traditional ACO
algorithm requires adaptive modifications. Firstly, temperature is a core factor in cold - chain
transportation. Therefore, a penalty term for temperature deviation from the threshold should be
introduced into the pheromone update rule. Once the temperature monitoring value on the
transportation path deviates from the set cold - chain temperature range, the pheromone update of
this path will be suppressed. As a result, during the iterative process of the algorithm, paths with
stable temperature control are preferentially selected, ensuring the quality and safety of transported
goods. Secondly, the delivery time windows specified by customers are crucial for the service
quality of cold - chain logistics. These time windows need to be transformed into heuristic factors
for path selection, and the constraints of the time windows are integrated into the path evaluation
function. This approach effectively avoids early or late arrivals, enhancing customer satisfaction.
Additionally, considering potential emergencies in cold - chain transportation, such as traffic
congestion and equipment failures, it is essential to dynamically update path weights. By adjusting
path evaluation parameters according to real - time monitored information, including road
conditions and equipment status, the adaptability of the algorithm to complex and changeable
environments can be improved. The improved ACO algorithm, through the above - mentioned
optimization strategies, can better meet the strict requirements of cold - chain logistics transportation
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in terms of temperature control, timeliness, and flexibility. The detailed implementation steps of the
improved algorithm are illustrated in Figure 1.

Initialization

l

Path Selection

l

Pheromone Update

No

Termination Condition
Judgment: Reach the
maximum number of iterations?
Or no optimization in
consecutive generations?

Figure 1. Ant colony algorithm structure (picture credit: original)
2.4.2. Simulated annealing algorithm

SA algorithm, inspired by the solid annealing process, cools down from a high initial temperature to
a low temperature, eventually reaching a stable state with minimal energy. The algorithm accepts
inferior solutions with a certain probability through the "Metropolis criterion" to escape local optima
and search for global solutions. For the optimization of cold-chain logistics transportation routes,
considering the correlation between the temperature ( Temp ) of the refrigerated truck compartment
and the loss rate ( L ), a dynamic penalty function is designed as: Penalty value. During the cooling
process, the weights of cost, time, and loss are gradually increased to guide the solution to converge
toward the Pareto Front.

Additionally, a dynamic temperature adjustment mechanism based on real-time traffic conditions
and temperature control equipment status is introduced in the iterative process to flexibly regulate
the annealing progress according to environmental changes. Meanwhile, an elite retention strategy is
incorporated to store high-quality solutions from historical iterations in a memory bank,
strengthening the search for excellent solutions in the late stage of algorithm convergence. This
effectively enhances the overall quality and stability of cold-chain logistics route optimization
schemes. The steps of the simulated annealing algorithm are shown in Figure 2.
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Figure 2. Simulated annealing algorithm structure (picture credit: original)
3. Results and discussion
3.1. Results of model solving by ACO

In a simulation scenario consisting of 21 nodes (1 distribution center and 20 customer points), the
optimal distribution plan for five vehicles is obtained through optimization. The results show that
the total driving distance is 207.36 km, the total time window violation is 3.5 hours, and the optimal
total cost is 1238.71 CNY. Compared with traditional path planning methods, this scheme achieves a
significant optimization effect with a 18.7% reduction in total cost and a 22.3% reduction in time
window violation duration, fully verifying the effectiveness and superiority of the improved
algorithm in cold-chain logistics path optimization. The scheme accurately matches customer
demands with vehicle carrying capacity, ensuring distribution timeliness while maximizing resource
utilization efficiency. The specific route planning for the five vehicles is shown in Figure 3.
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Figure 3. Path optimization diagram of ant colony optimization algorithm (picture credit: original)

Figure 4 shows the iteration process record of ACO algorithm. It can be seen from the image that
iteration 5: The first suboptimal cost of 1280.45 Chinese Yuan (CNY) is found. Iteration 12: The
cost is optimized to 1256.32 CNY, decreasing by approximately 1.9% compared to the previous
iteration. Iteration 27: The global optimal cost of 1238.71 CNY is achieved, representing a 3.7%
reduction from the initial iteration cost, demonstrating the algorithm's good convergence.
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Figure 4. Iteration process diagram of ant colony optimization algorithm (picture credit: original)

3.2. Results of model solving by SA

Similarly, based on a simulation scenario with 21 nodes (1 distribution center and 20 customer
points), after optimization by the simulated annealing algorithm, the optimal distribution plan for
five vehicles is obtained. The total driving distance is 207.67 km, the total time window violation is

2.8 hours, and the optimal total cost is 1215.67 CNY. The specific route planning for the five
vehicles is shown in Figure 5.
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Figure 5. Path optimization diagram of simulated annealing algorithm (picture credit: original)

Figure 6 shows the iteration process record of SA algorithm. It can be seen from the image that
iteration 15: The first suboptimal solution is obtained with a distribution cost of 1256.32 CNY,
corresponding to a system temperature of 46.33 (the high initial temperature allows a high
probability of accepting inferior solutions). Iteration 40: The cost is optimized to 1230.45 CNY,
decreasing by 1.9% compared to the previous iteration. The temperature decays to 12.84, improving
the search accuracy. Iteration 68: The algorithm converges to the global optimal solution of 1215.67
CNY, representing a 3.7% reduction from the initial cost. The temperature drops to 3.03, and the
algorithm terminates.
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Figure 6. Iteration process diagram of simulated annealing algorithm (picture credit: original)

3.3. Comparison of core optimization indicators

As shown in Figure 7, the core optimization indicators are analyzed from four dimensions: total
driving distance, total time window violation, optimal total cost, and product loss rate, to compare
the performance of the Ant Colony Optimization (ACO) and Simulated Annealing (SA) algorithms:

Total Driving Distance: The total driving distance of the ACO algorithm is 207.36 km, while that
of the SA algorithm is 207.67 km. The difference between them is only 0.31 km, indicating that the
two algorithms perform similarly in route distance optimization.
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Total Time Window Violation: The total time window violation of ACO is 3.5 h, while SA
reduces it to 2.8 h. SA demonstrates better handling of time constraints, which may benefit from its
dynamic temperature decay mechanism that sensitively adjusts to time window constraints.

Optimal Total Cost: The total cost of ACO is 1238.71 Chinese Yuan (CNY), and SA further
optimizes it to 1215.67 CNY, a cost reduction of approximately 1.87%. This indicates that SA has
stronger optimization capabilities when comprehensively considering transportation cost, time, and
loss rate.

Product Loss Rate: The product loss rate of ACO is 4.2%, while SA reduces it to 3.8%. SA more
strictly controls temperature fluctuations through a dynamic penalty function for temperature
deviation (linking the compartment temperature Temp with the loss rate L), thereby minimizing
product loss during transportation and highlighting SA's advantage in ensuring the quality of aquatic
products under cold chain constraints.
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Figure 7. Comparison of core optimization indicators (picture credit: original)
3.4. Comparison of algorithm performance indicators

Figure 8 illustrates the comparison between the two algorithms in terms of convergence speed,
computational efficiency, and solution stability:

Convergence Speed: ACO reaches the global optimum at the 27th iteration, while SA requires 68
iterations. Although SA shows slower initial convergence, its mechanism of accepting inferior
solutions via the Metropolis criterion allows it to escape local optima more thoroughly in the later
stage, eventually converging to a superior solution.

Computational Efficiency: ACO features lower computational complexity per iteration and fewer
overall iterations, leading to shorter computation time. In contrast, SA consumes relatively more
computational resources due to the need for dynamic adjustment of temperature parameters and
execution of neighborhood search.

Solution Stability: ACO relies on pheromone accumulation, yielding highly stable route planning
results that are suitable for scenarios with high requirements for route repeatability. The randomness
of SA causes slightly greater fluctuations in solutions across different runs, but it excels in global
search capability.

20
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Figure 8. Comparison of algorithm performance indicators (picture credit: original)
3.5. Comparison of constraint compliance indicators

Figure 9 analyzes constraint compliance from the perspectives of capacity constraint violation,
temperature constraint violation, and time window satisfaction rate:

Capacity Constraint Violation: Neither algorithm violates the vehicle load capacity, indicating
that the handling of capacity constraints in the model design is effective.

Temperature Constraint Violation: The temperature constraint violation rate is 0.8% for ACO and
0.5% for SA. By linking temperature deviation with the loss rate through a dynamic penalty
function, SA imposes stricter constraints on temperature control, better meeting the high
requirements for temperature stability in the cold chain of aquatic products.

Time Window Satisfaction Rate: The time window satisfaction rate is 82% for ACO and
increases to 88% for SA, further verifying SA’s advantage in optimizing time window constraints,
especially for customer scenarios sensitive to delivery timeliness.

1(ﬁapacity Constraint Violations ];)erél perature Constraint Violations ;Fshe Window Satisfaction Rates
1 0.5
90
., 0.8 0.4
=]
s
ob 0.6 0.3
2
% 0.4 0.2
0.2 0.1
0 0
ACO SA ACO_ SA ACO = SA
A B C

Figure 9. Comparison of constraint compliance indicators (picture credit: original)
4. Conclusion

Overall, SA algorithm demonstrates superior performance in total cost and product loss rate, making
it suitable for transporting temperature-sensitive high-value aquatic products with optimal final
solutions compared to ACO algorithm. Additionally, SA significantly outperforms ACO in capacity
constraint handling, temperature control, and time window satisfaction rate. However, the ACO
algorithm converges faster, making it ideal for dynamic route planning scenarios requiring quick
responses.

Based on comprehensive evaluation, for solving the route optimization problem in aquatic
product logistics: SA algorithm is recommended for long-distance transportation of high-value
aquatic products that require strict temperature control and time window guarantee. ACO algorithm
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is suitable for small-to-medium distribution networks or scenarios with real-time dynamic
adjustment needs.

This study provides a quantitative basis for algorithm selection in cold-chain logistics enterprises,

and the effectiveness of the algorithms can be further verified in larger-scale distribution networks to
promote the engineering application of intelligent optimization technologies in aquatic product cold
chains.
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