References
[1]. Kokash, N., & Makhnist, L. (2023). Using Decision Trees for Interpretable Supervised Clustering. SN Comput. Sci., 5, 268.
[2]. Afrin, K. , Nepal, B. , & Monplaisir, L. . (2018). A data-driven framework to new product demand prediction: integrating product differentiation and transfer learning approach. Expert Systems with Applications, 108(OCT.), 246-257.
[3]. Khan, M. A. , Islam, M. Z. , & Hafeez, M. . (2020). Data pre-processing and evaluating the performance of several data mining methods for predicting irrigation water requirement.
[4]. Usuga, J. P. C., Lamouri, S., & Grabot, B. (2018). Trends in Machine Learning Applied to Demand & Sales Forecasting: A Review. ILS 2018 - Information Systems, Logistics and Supply Chain, Proceedings, 307-316.
[5]. Yang, L. , Niu, X. , & Wu, J. . (2021). Rf-lighgbm: a probabilistic ensemble way to predict customer repurchase behaviour in community e-commerce.
[6]. Kim, J.Y. (2021). Using Machine Learning to Predict Poverty Status in Costa Rican Households. SSRN Electronic Journal.
[7]. Aouad, A., Elmachtoub, A.N., Ferreira, K.J., & McNellis, R. (2019). Market Segmentation Trees. Manuf. Serv. Oper. Manag., 25, 648-667.
[8]. Xu, N., & Hu, C. (2023). Enhancing E-Commerce Recommendation using Pre-Trained Language Model and Fine-Tuning. ArXiv, abs/2302.04443.
[9]. Sirkeci, I., Dahl, S., & Zeyneloğlu, S. (2022). The Impact of Perceptions of Social Media Advertisements on Advertising Value, Brand Awareness and Brand Associations: Research on Generation Y Instagram Users. Transnational Marketing Journal.
[10]. Bodine, J., & Hochbaum, D.S. (2020). The Max-Cut Decision Tree: Improving on the Accuracy and Running Time of Decision Trees. ArXiv, abs/2006.14118.
[11]. Xu, K. , Zhou, H. , Zheng, H. , Zhu, M. , & Xin, Q. . (2024). Intelligent classification and personalized recommendation of e-commerce products based on machine learning.
[12]. Garc'ia-Gil, D., Garc'ia, S., Xiong, N., & Herrera, F. (2020). Smart Data Driven Decision Trees Ensemble Methodology for Imbalanced Big Data. Cogn. Comput., 16, 1572-1588.
[13]. Johannes, R., & Alamsyah, A. (2021). Sales Prediction Model Using Classification Decision Tree Approach For Small Medium Enterprise Based on Indonesian E-Commerce Data. ArXiv, abs/2103.03117.
[14]. Moulay, M., Leiva, R.A., Maroni, P.J., Mancuso, V., Fernandez Anta, A., & Khatouni, A.S. (2021). MonTrees: Automated Detection and Classification of Networking Anomalies in Cellular Networks. ArXiv, abs/2108.13156.
[15]. Karb, T., Kühl, N., Hirt, R., & Glivici-Cotruţă, V. (2020). A network-based transfer learning approach to improve sales forecasting of new products. ArXiv, abs/2005.06978.
[16]. Madani, B., & Alshraideh, H. (2021). Predicting Consumer Purchasing Decision in The Online Food Delivery Industry. ArXiv, abs/2110.00502.