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Abstract. Minimax and alpha-beta pruning have been widely applied in AI for various 

strategic board games, the utilization of greedy algorithms in this context has received less 

attention. The Greedy algorithms aim to make locally optimal choices at each step, exploiting 

immediate gains. This research aims to reveal the potential benefits and limitations of applying 

greedy algorithms in Reversi gaming AI, specifically through a comparison with the Minimax 

algorithm. A series of AI versus AI matches were conducted to evaluate and compare the 

performance of the three different AI algorithms. The objective was to assess their gameplay 

strategies and decision-making abilities by measuring their average execution time and win 

rates. Relevant codes and experiments will be carried out in a C++ environment, and the shown 

codes in this article will only have pseudocode and comments. In conclusion, the findings of 

this study indicate that the Greedy Algorithm is not a superior alternative to the Minimax 

Algorithm in competitive scenarios, particularly with increased searching depth. However, 

greedy algorithms still have weak competitiveness with reduced computational time. For future 

research, concentrating on improving the performance of the Greedy Algorithm by 

incorporating more advanced heuristics or adaptive strategies maybe a good choice. 

Additionally, combining the strengths of both the Greedy Algorithm and the Minimax 

Algorithm could be a promising direction for further investigation. 
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1.  Introduction 

In recent years, significant advancements have been made in the field of artificial intelligence (AI), 

enabling intelligent systems to excel in various fields. Strategic board games have long served as 

popular test beds for evaluating the capabilities of AI algorithms, including groundbreaking 

achievements like Alpha-Go. Among these games, Reversi, also known as Othello, presents a complex 

and challenging environment for AI systems to demonstrate their decision-making prowess. This paper 

is going to focus on the application of AI techniques, including greedy algorithms, Minimax, alpha-

beta pruning, and game theory principles, to enhance the performance of AI systems in playing 

Reversi. 

Reversi is a two-player board game, involves placing and flipping pieces with the objective of 

gaining the majority of the board. Its simplicity, well-defined rules, and strategic depth make it an 

ideal choice for studying AI algorithms. While techniques like Minimax and alpha-beta pruning have 

been widely applied in AI for various strategic board games, the utilization of greedy algorithms in 

this context has received less attention. Greedy algorithms aim to make locally optimal choices at each 
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step, exploiting immediate gains. On the other hand, Minimax allows the AI to evaluate future 

positions by considering a certain depth of the game tree and alternating between maximizing its own 

score and minimizing the opponent's score. And by using alpha-beta pruning, we can enhance the 

efficiency of the Minimax algorithm, reducing the number of explored nodes and improving decision-

making speed. 

This research aims to reveal the potential benefits and limitations of applying greedy algorithms in 

gaming scenarios, specifically through a comparison with the Minimax algorithm. This paper aims to 

reveal whether the utilization of greedy algorithms can lead to increased victories for AI players. By 

exploring the effectiveness of various techniques in Reversi, we can better understand their 

applicability in the strategic domain and contribute to deeper and more detailed research on the role of 

AI in game theory. 

2.  Different AI strategies 

Early game theory can be traced back to [1]. In this section, three distinct Reversi AI algorithms 

(random move algorithm, Greedy Algorithm, Minimax algorithms with alpha-beta pruning) will be 

mentioned, and each is designed with different move stragy. The objective of this section is to offer an 

understanding of the logic and implementation of these algorithms. Pseudocode will be presented in 

the figures to facilitate comprehension. 

2.1.  Random move algorithm 

In the below pseudocode:  

 

// Pseudocode: randomMoveAlgorithm 

function randomMoveAlgorithm(board, currentPlayer): 

       validMoves = get all valid move positions 

       If validMoves is empty: 

            return 

 

             randomIndex = generate random integer between 0 and length of validMoves - 1 

             randomMove = validMoves[randomIndex] 

             row = randomMove.row 

             col = randomMove.col 

 

            place currentPlayer’s piece at board[row][col] 

 

The “random Move Algorithm” function iterates through all the available positions to make a move 

and selects one position randomly. It first checks if there are any valid move positions. If there are, it 

generates a random index within the range of valid moves and selects the corresponding move. Then, 

it retrieves the row and column of the randomly selected move and places the current player's piece at 

that position on the board. 

This random move algorithm doesn't evaluate the current state of the game and lacks 

competitiveness, but it provides a simple and quick way for the AI to make a move without spending 

time on board evaluations. It is commonly used in the simplest difficulty level of AI for the game of 

Reversi. 

2.2.  Greedy algorithm 

At each turn, the algorithm aims to maximize the number of opponent's pieces that can be flipped. 

However, if a move is possible in one of the four corners of the board, the AI will add a higher score 

on it. 

In the code below,  
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// Pseudocode: evaluateMove 

function evaluateMove(board, row, col, currentPlayer): 

       flippedCount = 0 

       for each direction in all directions: 

            count = 0 

            find all pieces can be flipped 

            if piece can be flipped: 

                 flippedCount += count 

 

        if (row, col) is a corner position: 

             flippedCount += 10 // Add a higher score for corner positions 

        return flippedCount 

 

The the “evaluateMove” function is responsible for evaluating a specific move position on the 

board. It calculates the scores by considering the number of opponent's pieces that can be flipped by 

making that move. It iterates through all possible directions from the given position. For each direction, 

it checks how many of the opponent's pieces can be flipped by extending in that direction. It counts the 

number of opponent's pieces that can be flipped and adds it to the “flippedCount”. Additionally, if the 

move position is in the corner of the board, it adds a higher weight to the “flippedCount” to prioritize 

corner moves. The “evaluateMove” function then returns the “flippedCount” as the evaluation score 

for that move position. 

Then in the “ai2MakeMove” function,  

 

// Pseudocode: ai2MakeMove 

function ai2MakeMove(board, currentPlayer): 

        validMoves = get all valid move positions 

        if validMoves is empty: 

             return 

 

        bestMove = validMoves [0] 

        maxScore = -infinity 

 

        for each move in validMoves: 

              row = move.row 

              col = move.col 

              score = evaluateMove(board, row, col, currentPlayer) 

 

               if score > maxScore: 

                     maxScore = score 

                     bestMove = move 

 

        Place currentPlayer’s piece at bestMove.row, beatMove.col 

 

This function is responsible for the AI's decision-making process to select the best move position to 

play. It starts by obtaining all valid move positions available for the current player on the board. If 

there are no valid moves, the function exits. Otherwise, it initializes variables “bestMove” and 

“maxScore” to track the move with the highest score. It then iterates through each move position. For 

each move, it calls the “evaluateMove” function to calculate the score of that move position. If the 

calculated score is higher than the current “maxScore”, it updates the “maxScore” and sets the current 

move position as the “bestMove”. After evaluating all the available moves, the function selects the 

“bestMove” and places the current player's piece at that position on the board. 
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2.3.  Minimax algorithms with alpha-beta pruning 

2.3.1.  Minimax. The minimax algorithm is originally from the Park-McClellan algorithm, published 

by James McClellan and Thomas Parks in 1972 [2]. Minimax is a widely used decision-making 

algorithm in game theory and AI. It is particularly suitable for turn-based games like Reversi. 

“Minimax is used to identify the best moves in a game tree generated by each player’s legal actions. 

Terminal nodes represent finished games; these are scored according to the game rules.”[3]. The 

Minimax algorithm considers the game as a zero-sum competition between two players: one player 

maximizes their own score, while the other minimizes it. By recursively evaluating possible moves 

and their consequences on the game state, the AI can anticipate the opponent's responses and select the 

most advantageous move. “For any game, we can define a rooted tree (the "game tree") in which the 

nodes correspond to game positions, and the children of a node are the positions that can be reached 

from it in one move.” [4]. The depth of the game tree search determines the level of strategic analysis 

performed by the algorithm, as shown in figure 1.  

 

Figure 1. An example of minimax search tree in Tic Tac Toe. 

2.3.2.  Alpha-beta pruning. Alpha-beta pruning is an optimization technique applied to the Minimax 

algorithm to reduce the number of nodes evaluated during the search process. It eliminates the 

evaluation of certain branches that are guaranteed to be less optimal, thus significantly reducing the 

time cost. By maintaining upper and lower bounds, known as alpha and beta, the algorithm prunes 

branches that cannot possibly affect the final decision. “Alpha-Beta Pruning is a good optimization of 

Minimax because achieves the same results using less time and memory, as less moves and less states 

are evaluated.” [5]. This pruning technique allows the AI to explore a deeper depth of the game tree in 

less time, as shown in figure 2 [6]. 

 

Figure 2. An illustration of alpha-beta pruning. 
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3.  Evaluation 

This section will have two subsections: Test and test result. The test section will cover research 

methods, research objects, and research tools. The test result section will show the data of the test in 

figures. Simple analysis will also be included. 

3.1.  Test 

To evaluate and compare the performance of the three different AI algorithms, a series of AI versus AI 

matches were conducted. The objective was to assess their gameplay strategies, decision-making 

abilities by measuring their average execution time and win rates. 

In these conducted multiple matches, each algorithm played against the other two algorithms in 

black and white. In these multiple games, each algorithm is played against the other two algorithms 

1000 times in black and white, and the winning percentage and average running time between 

different algorithms will be recorded.  

All matches were played on a 6x6 Reversi board. Relevant codes and experiments will be carried 

out in a C++ environment 

3.2.  Test result 

 

Figure 3. Performance comparison of each algorithms. 

According to figure 3, the notation “B” and “W” means the AI are holding black and white pieces, 

Depth X indicates the depth of this minimax tree is X. For example, (B)Depth 3 means the AI setting 

as the depth 3 minimax algorithms is holding black piece. 

According to the data in figure 6, the minimax algorithms shown a majority of winning, especially 

as depth increases. The greedy algorithm has shown a major advantage in playing against random 

algorithms. When holding black pieces, weak advantage is shown when against depth 3 minimax 

algorithms, but disadvantage when holding white pieces. In general, the greedy algorithm can maintain 
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a win rate of 44% against minimax opponents in depth 3. However, as the depth increases, the Greedy 

Algorithm loses its competitiveness, and its win rate dramatically drops to less than 1%. 

 

Figure 4. Running time of each algorithms. 

According to figure 4, the total runtime of each algorithms in each 1000 matches is shown in 

millisecond(ms). The runtime of minimax algorithm is increasing with depth, the average runtime time 

increase by 37.7% as the depth change from 3 to 5, which the minimax algorithm in depth 3 has 

average runtime in 389.88ms, depth 5 has average runtime in 536.95ms. Random and Greedy 

algorithms perform great in the runtime test with both of them have a average runtime less than 2ms. 

4.  Conclusion 

The research conducted in this study addressed the question of whether the application of Greedy 

Algorithms can lead to increased victories for AI players in gaming scenarios, compared to the 

Minimax Algorithm. Based on the research findings presented in this paper, it can be concluded that 

the Greedy Algorithm, although efficient in terms of execution time, does not perform better than the 

Minimax Algorithm, especially when the searching depth of Minimax is increased. The results 

indicate that the Greedy Algorithm is not a highly intelligent strategy in competitive scenarios, where 

the Minimax Algorithm with a deeper searching depth showcases superior performance. “The AI 

preformed much better the more it looked ahead versus looking for moves valuable in the short term.” 

[7]. 

However, it is worth noting that the Greedy Algorithm does possess certain advantages. One of its 

strengths lies in its low computational time, allowing for quick decision-making. In comparison to the 

Random Algorithm, the Greedy Algorithm gains more victories overall while maintaining a similar 

execution time. 

In conclusion, the findings of this study indicate that the Greedy Algorithm is not a superior 

alternative to the Minimax Algorithm in competitive scenarios, particularly with increased searching 

depth. However, its advantage lies in its reduced computational time, making it a viable option for 

scenarios where time efficiency is prioritized. It is important to further refine and enhance the 
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algorithmic strategies in order to develop more effective AI systems for strategic decision-making in 

various gaming scenarios. For future research, concentrating on improving the performance of the 

Greedy Algorithm by incorporating more advanced heuristics or adaptive strategies maybe a good 

choice. Additionally, combining the strengths of both the Greedy Algorithm and the Minimax 

Algorithm could be a promising direction for further investigation. 
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