
Comparison of different algorithms in Reversi AI

Xi Chen

Liberal Arts and Sciences, Columbus Community State College, Columbus, 550 East

Spring St. Columbus, OH 43215, the United States of America

xchen29@student.cscc.edu

Abstract. Minimax and alpha-beta pruning have been widely applied in AI for various

strategic board games, the utilization of greedy algorithms in this context has received less

attention. The Greedy algorithms aim to make locally optimal choices at each step, exploiting

immediate gains. This research aims to reveal the potential benefits and limitations of applying

greedy algorithms in Reversi gaming AI, specifically through a comparison with the Minimax

algorithm. A series of AI versus AI matches were conducted to evaluate and compare the

performance of the three different AI algorithms. The objective was to assess their gameplay

strategies and decision-making abilities by measuring their average execution time and win

rates. Relevant codes and experiments will be carried out in a C++ environment, and the shown

codes in this article will only have pseudocode and comments. In conclusion, the findings of

this study indicate that the Greedy Algorithm is not a superior alternative to the Minimax

Algorithm in competitive scenarios, particularly with increased searching depth. However,

greedy algorithms still have weak competitiveness with reduced computational time. For future

research, concentrating on improving the performance of the Greedy Algorithm by

incorporating more advanced heuristics or adaptive strategies maybe a good choice.

Additionally, combining the strengths of both the Greedy Algorithm and the Minimax

Algorithm could be a promising direction for further investigation.

Keywords: Reversi, greedy algorithms, Minimax, alpha-beta pruning, artificial intelligence.

1. Introduction

In recent years, significant advancements have been made in the field of artificial intelligence (AI),

enabling intelligent systems to excel in various fields. Strategic board games have long served as

popular test beds for evaluating the capabilities of AI algorithms, including groundbreaking

achievements like Alpha-Go. Among these games, Reversi, also known as Othello, presents a complex

and challenging environment for AI systems to demonstrate their decision-making prowess. This paper

is going to focus on the application of AI techniques, including greedy algorithms, Minimax, alpha-

beta pruning, and game theory principles, to enhance the performance of AI systems in playing

Reversi.

Reversi is a two-player board game, involves placing and flipping pieces with the objective of

gaining the majority of the board. Its simplicity, well-defined rules, and strategic depth make it an

ideal choice for studying AI algorithms. While techniques like Minimax and alpha-beta pruning have

been widely applied in AI for various strategic board games, the utilization of greedy algorithms in

this context has received less attention. Greedy algorithms aim to make locally optimal choices at each

Proceedings of the 2023 International Conference on Machine Learning and Automation
DOI: 10.54254/2755-2721/32/20230190

© 2024 The Authors. This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0
(https://creativecommons.org/licenses/by/4.0/).

99

step, exploiting immediate gains. On the other hand, Minimax allows the AI to evaluate future

positions by considering a certain depth of the game tree and alternating between maximizing its own

score and minimizing the opponent's score. And by using alpha-beta pruning, we can enhance the

efficiency of the Minimax algorithm, reducing the number of explored nodes and improving decision-

making speed.

This research aims to reveal the potential benefits and limitations of applying greedy algorithms in

gaming scenarios, specifically through a comparison with the Minimax algorithm. This paper aims to

reveal whether the utilization of greedy algorithms can lead to increased victories for AI players. By

exploring the effectiveness of various techniques in Reversi, we can better understand their

applicability in the strategic domain and contribute to deeper and more detailed research on the role of

AI in game theory.

2. Different AI strategies

Early game theory can be traced back to [1]. In this section, three distinct Reversi AI algorithms

(random move algorithm, Greedy Algorithm, Minimax algorithms with alpha-beta pruning) will be

mentioned, and each is designed with different move stragy. The objective of this section is to offer an

understanding of the logic and implementation of these algorithms. Pseudocode will be presented in

the figures to facilitate comprehension.

2.1. Random move algorithm

In the below pseudocode:

// Pseudocode: randomMoveAlgorithm

function randomMoveAlgorithm(board, currentPlayer):

 validMoves = get all valid move positions

 If validMoves is empty:

 return

 randomIndex = generate random integer between 0 and length of validMoves - 1

 randomMove = validMoves[randomIndex]

 row = randomMove.row

 col = randomMove.col

 place currentPlayer’s piece at board[row][col]

The “random Move Algorithm” function iterates through all the available positions to make a move

and selects one position randomly. It first checks if there are any valid move positions. If there are, it

generates a random index within the range of valid moves and selects the corresponding move. Then,

it retrieves the row and column of the randomly selected move and places the current player's piece at

that position on the board.

This random move algorithm doesn't evaluate the current state of the game and lacks

competitiveness, but it provides a simple and quick way for the AI to make a move without spending

time on board evaluations. It is commonly used in the simplest difficulty level of AI for the game of

Reversi.

2.2. Greedy algorithm

At each turn, the algorithm aims to maximize the number of opponent's pieces that can be flipped.

However, if a move is possible in one of the four corners of the board, the AI will add a higher score

on it.

In the code below,

Proceedings of the 2023 International Conference on Machine Learning and Automation
DOI: 10.54254/2755-2721/32/20230190

100

// Pseudocode: evaluateMove

function evaluateMove(board, row, col, currentPlayer):

 flippedCount = 0

 for each direction in all directions:

 count = 0

 find all pieces can be flipped

 if piece can be flipped:

 flippedCount += count

 if (row, col) is a corner position:

 flippedCount += 10 // Add a higher score for corner positions

 return flippedCount

The the “evaluateMove” function is responsible for evaluating a specific move position on the

board. It calculates the scores by considering the number of opponent's pieces that can be flipped by

making that move. It iterates through all possible directions from the given position. For each direction,

it checks how many of the opponent's pieces can be flipped by extending in that direction. It counts the

number of opponent's pieces that can be flipped and adds it to the “flippedCount”. Additionally, if the

move position is in the corner of the board, it adds a higher weight to the “flippedCount” to prioritize

corner moves. The “evaluateMove” function then returns the “flippedCount” as the evaluation score

for that move position.

Then in the “ai2MakeMove” function,

// Pseudocode: ai2MakeMove

function ai2MakeMove(board, currentPlayer):

 validMoves = get all valid move positions

 if validMoves is empty:

 return

 bestMove = validMoves [0]

 maxScore = -infinity

 for each move in validMoves:

 row = move.row

 col = move.col

 score = evaluateMove(board, row, col, currentPlayer)

 if score > maxScore:

 maxScore = score

 bestMove = move

 Place currentPlayer’s piece at bestMove.row, beatMove.col

This function is responsible for the AI's decision-making process to select the best move position to

play. It starts by obtaining all valid move positions available for the current player on the board. If

there are no valid moves, the function exits. Otherwise, it initializes variables “bestMove” and

“maxScore” to track the move with the highest score. It then iterates through each move position. For

each move, it calls the “evaluateMove” function to calculate the score of that move position. If the

calculated score is higher than the current “maxScore”, it updates the “maxScore” and sets the current

move position as the “bestMove”. After evaluating all the available moves, the function selects the

“bestMove” and places the current player's piece at that position on the board.

Proceedings of the 2023 International Conference on Machine Learning and Automation
DOI: 10.54254/2755-2721/32/20230190

101

2.3. Minimax algorithms with alpha-beta pruning

2.3.1. Minimax. The minimax algorithm is originally from the Park-McClellan algorithm, published

by James McClellan and Thomas Parks in 1972 [2]. Minimax is a widely used decision-making

algorithm in game theory and AI. It is particularly suitable for turn-based games like Reversi.

“Minimax is used to identify the best moves in a game tree generated by each player’s legal actions.

Terminal nodes represent finished games; these are scored according to the game rules.”[3]. The

Minimax algorithm considers the game as a zero-sum competition between two players: one player

maximizes their own score, while the other minimizes it. By recursively evaluating possible moves

and their consequences on the game state, the AI can anticipate the opponent's responses and select the

most advantageous move. “For any game, we can define a rooted tree (the "game tree") in which the

nodes correspond to game positions, and the children of a node are the positions that can be reached

from it in one move.” [4]. The depth of the game tree search determines the level of strategic analysis

performed by the algorithm, as shown in figure 1.

Figure 1. An example of minimax search tree in Tic Tac Toe.

2.3.2. Alpha-beta pruning. Alpha-beta pruning is an optimization technique applied to the Minimax

algorithm to reduce the number of nodes evaluated during the search process. It eliminates the

evaluation of certain branches that are guaranteed to be less optimal, thus significantly reducing the

time cost. By maintaining upper and lower bounds, known as alpha and beta, the algorithm prunes

branches that cannot possibly affect the final decision. “Alpha-Beta Pruning is a good optimization of

Minimax because achieves the same results using less time and memory, as less moves and less states

are evaluated.” [5]. This pruning technique allows the AI to explore a deeper depth of the game tree in

less time, as shown in figure 2 [6].

Figure 2. An illustration of alpha-beta pruning.

Proceedings of the 2023 International Conference on Machine Learning and Automation
DOI: 10.54254/2755-2721/32/20230190

102

3. Evaluation

This section will have two subsections: Test and test result. The test section will cover research

methods, research objects, and research tools. The test result section will show the data of the test in

figures. Simple analysis will also be included.

3.1. Test

To evaluate and compare the performance of the three different AI algorithms, a series of AI versus AI

matches were conducted. The objective was to assess their gameplay strategies, decision-making

abilities by measuring their average execution time and win rates.

In these conducted multiple matches, each algorithm played against the other two algorithms in

black and white. In these multiple games, each algorithm is played against the other two algorithms

1000 times in black and white, and the winning percentage and average running time between

different algorithms will be recorded.

All matches were played on a 6x6 Reversi board. Relevant codes and experiments will be carried

out in a C++ environment

3.2. Test result

Figure 3. Performance comparison of each algorithms.

According to figure 3, the notation “B” and “W” means the AI are holding black and white pieces,

Depth X indicates the depth of this minimax tree is X. For example, (B)Depth 3 means the AI setting

as the depth 3 minimax algorithms is holding black piece.

According to the data in figure 6, the minimax algorithms shown a majority of winning, especially

as depth increases. The greedy algorithm has shown a major advantage in playing against random

algorithms. When holding black pieces, weak advantage is shown when against depth 3 minimax

algorithms, but disadvantage when holding white pieces. In general, the greedy algorithm can maintain

0

200

400

600

800

1000

1200
Performance Comparison of Reversi AI Algorithms Win Loss

Proceedings of the 2023 International Conference on Machine Learning and Automation
DOI: 10.54254/2755-2721/32/20230190

103

a win rate of 44% against minimax opponents in depth 3. However, as the depth increases, the Greedy

Algorithm loses its competitiveness, and its win rate dramatically drops to less than 1%.

Figure 4. Running time of each algorithms.

According to figure 4, the total runtime of each algorithms in each 1000 matches is shown in

millisecond(ms). The runtime of minimax algorithm is increasing with depth, the average runtime time

increase by 37.7% as the depth change from 3 to 5, which the minimax algorithm in depth 3 has

average runtime in 389.88ms, depth 5 has average runtime in 536.95ms. Random and Greedy

algorithms perform great in the runtime test with both of them have a average runtime less than 2ms.

4. Conclusion

The research conducted in this study addressed the question of whether the application of Greedy

Algorithms can lead to increased victories for AI players in gaming scenarios, compared to the

Minimax Algorithm. Based on the research findings presented in this paper, it can be concluded that

the Greedy Algorithm, although efficient in terms of execution time, does not perform better than the

Minimax Algorithm, especially when the searching depth of Minimax is increased. The results

indicate that the Greedy Algorithm is not a highly intelligent strategy in competitive scenarios, where

the Minimax Algorithm with a deeper searching depth showcases superior performance. “The AI

preformed much better the more it looked ahead versus looking for moves valuable in the short term.”

[7].

However, it is worth noting that the Greedy Algorithm does possess certain advantages. One of its

strengths lies in its low computational time, allowing for quick decision-making. In comparison to the

Random Algorithm, the Greedy Algorithm gains more victories overall while maintaining a similar

execution time.

In conclusion, the findings of this study indicate that the Greedy Algorithm is not a superior

alternative to the Minimax Algorithm in competitive scenarios, particularly with increased searching

depth. However, its advantage lies in its reduced computational time, making it a viable option for

scenarios where time efficiency is prioritized. It is important to further refine and enhance the

0

100

200

300

400

500

600

700

(B)Depth 3/5

(W)Random

(B)Depth 3/5

(W)Greedy

 (W)Depth 3/5

(B)Random

 (W)Depth 3/5

(B)Greedy

Average time cost

Total Time Cost(ms)

of each algorithms

in 1000 matches

Depth 3 Depth 5 Random Greedy

Proceedings of the 2023 International Conference on Machine Learning and Automation
DOI: 10.54254/2755-2721/32/20230190

104

algorithmic strategies in order to develop more effective AI systems for strategic decision-making in

various gaming scenarios. For future research, concentrating on improving the performance of the

Greedy Algorithm by incorporating more advanced heuristics or adaptive strategies maybe a good

choice. Additionally, combining the strengths of both the Greedy Algorithm and the Minimax

Algorithm could be a promising direction for further investigation.

References

[1] v. Neumann, J. (1928). Zur theorie der gesellschaftsspiele. Mathematische annalen, 100(1), 295-

320.

[2] McClellan, JH, & Parks, TW (2005). A personal history of the Parks-McClellan algorithm.

IEEE signal processing magazine, 22 (2), 82-86.

[3] Engel, K. T. (2023). Learning a Reversi Board Evaluator with Minimax.

https://www.cs.umd.edu/sites/default/files/scholarly_papers/Engel.pdf

[4] David Eppstein, (1997), Lecture notes for Minimax and negamax search.

https://www.ics.uci.edu/~eppstein/180a/970417.html

[5] Festa, J., & Davino, S. (2013). " IAgo vs Othello": An Artificial Intelligence Agent Playing

Reversi. In PAI@ AI* IA (pp. 43-50).

[6] By Jez9999, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=3708424

[7] Ross, G. D. (2019). Reversi Artificial Intelligence: A Project Management Analysis.

https://digitalcommons.olivet.edu/csis_stsc/13

Proceedings of the 2023 International Conference on Machine Learning and Automation
DOI: 10.54254/2755-2721/32/20230190

105

