References
[1]. Wang, L., Yoon, K. J. (2021). Knowledge distillation and student-teacher learning for visual intelligence: A review and new outlooks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 44(6): 3048-3068.
[2]. Liu, F. (2025). Research on Chinese Spelling Correction Methods Based on Multimodal Feature Fusion. North China University of Technology. DOI: 10.26926/d.cnki.gbfgu.2025.000686.
[3]. Brown, T., Mann, B., Ryder, N. et al., (2020). Language mod-els are few-shot learners, " Advances in neural information processing systems, vol. 33, pp. 1877-1901.
[4]. Zhang, Z., Zhang, A., Li, M., et al. (2022). Automatic chain of thought prompting in large language models. https: //arxiv.org/abs/2210.03493.
[5]. Huang, J., Gu, S. S., Hou, L., et al. (2022). Large language models can self-improve. https: //arxiv. org/abs/ 2210.11610.
[6]. Szegedy, C., Vanhoucke, V., Ioffe, S., et al. (2016). Rethinking the inception architecture for computer vision. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2818-2826.
[7]. Zhang, Y., Xiang, T., Hospedales, T. M., et al. (2018). Deep mutual learning. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 4320-4328.
[8]. Chu, Z., Chen, J., Chen, Q. et al., (2023). A survey of chain of thought reasoning: Advances, frontiers and future, arXiv preprint arXiv: 2309.15402.
[9]. Ji, X. L. (2025). Dynamic Self-Optimization: An Adaptive Standard and Feedback-Driven Optimization Framework for Large Language Model Question-Answering. Intelligent Computer and Applications, 1-8. https: //doi.org/10.20169/j.issn.2095-2163.25072303.
[10]. Ding, Y., Chang, J., Liu, Y. M., et al. (2025). Knowledge Distillation for Efficient Deployment and Application of Large Language Models. Information and Communication Technology, 19(03): 53-60. DOI: CNKI: SUN: OXXT.0.2025-03-008.