References
[1]. Lin, Z., Liu, Z., & Fan, H. (2025). Improving Phishing Email Detection Performance of Small Large Language Models. arXiv preprint arXiv: 2505.00034.
[2]. Eger, S., & Benz, Y. (2020). From Hero to Z\'eroe: A Benchmark of Low-Level Adversarial Attacks. arXiv preprint arXiv: 2010.05648.
[3]. Chen, X., Salem, A., Chen, D., Backes, M., Ma, S., Shen, Q., ... & Zhang, Y. (2021, December). Badnl: Backdoor attacks against nlp models with semantic-preserving improvements. In Proceedings of the 37th Annual Computer Security Applications Conference (pp. 554-569).
[4]. Li, L., Ma, R., Guo, Q., Xue, X., & Qiu, X. (2020). Bert-attack: Adversarial attack against bert using bert. arXiv preprint arXiv: 2004.09984.
[5]. Belinkov, Y., & Bisk, Y. (2017). Synthetic and natural noise both break neural machine translation. arXiv preprint arXiv: 1711.02173.
[6]. Boucher, N., Shumailov, I., Anderson, R., & Papernot, N. (2022, May). Bad characters: Imperceptible nlp attacks. In 2022 IEEE Symposium on Security and Privacy (SP) (pp. 1987-2004). IEEE.
[7]. Gao, J., Lanchantin, J., Soffa, M. L., & Qi, Y. (2018, May). Black-box generation of adversarial text sequences to evade deep learning classifiers. In 2018 IEEE Security and Privacy Workshops (SPW) (pp. 50-56). IEEE.
[8]. Gao, J., Lanchantin, J., Soffa, M. L., & Qi, Y. (2018, May). Black-box generation of adversarial text sequences to evade deep learning classifiers. In 2018 IEEE Security and Privacy Workshops (SPW) (pp. 50-56). IEEE.
[9]. Jin, D., Jin, Z., Zhou, J. T., & Szolovits, P. (2019). Is bert really robust? natural language attack on text classification and entailment. arXiv preprint arXiv: 1907.11932, 2(10).
[10]. Zang, Y., Qi, F., Yang, C., Liu, Z., Zhang, M., Liu, Q., & Sun, M. (2019). Word-level textual adversarial attacking as combinatorial optimization. arXiv preprint arXiv: 1910.12196.
[11]. Gregory, J., & Liao, Q. (2023, September). Adversarial spam generation using adaptive gradient-based word embedding perturbations. In 2023 IEEE International Conference on Artificial Intelligence, Blockchain, and Internet of Things (AIBThings) (pp. 1-5). IEEE.
[12]. Huq, A., & Pervin, M. (2020). Adversarial attacks and defense on texts: A survey. arXiv preprint arXiv: 2005.14108.
[13]. Hotoğlu, E., Sen, S., & Can, B. (2025). A Comprehensive Analysis of Adversarial Attacks against Spam Filters. arXiv preprint arXiv: 2505.03831.