A Review of Human-Centric Generative Image Editing: From Latent Space Control to Interactive Manipulation
Research Article
Open Access
CC BY

A Review of Human-Centric Generative Image Editing: From Latent Space Control to Interactive Manipulation

Yuezhe Yu 1*
1 College of Computer Science and Engineering, Shandong University of Science and Technology, Qingdao, China
*Corresponding author: yyzbill1106@gmail.com
Published on 26 November 2025
Volume Cover
ACE Vol.210
ISSN (Print): 2755-273X
ISSN (Online): 2755-2721
ISBN (Print): 978-1-80590-567-7
ISBN (Online): 978-1-80590-568-4
Download Cover

Abstract

Over the past ten years, the image editing field has experienced a paradigm evolution driven by pixel-wise control, such as Adobe Photoshop, to generative models. With the rise of Generative Adversarial Networks(GANs) and diffusion models, it is now possible to control images through a higher-level semantic understanding. This core vision aims to bridge the gap between human intention and model performance. To address this challenge, the research has shifted from improving generative quality to editing methods, which puts "human-in-the-loop" at the core. The evolution of control reflects the changes in user communities: from code-based abstract latent space manipulation used by early researchers, to the later natural language-based text-to-image image editing (such as InstructPix2Pix), and finally developed to the direct drag-and-drop interaction represented by DragGAN for creators without background mechanisms. The alternative from technical mechanisms. "model-centered" to "user-centered" means the democratization of content creation tools, implying more focus on human-computer interaction principles in future research. To clearly outline the development of this field, this review categorizes existing methods into three paradigms based on the discrepancy in human control modalities: latent spatial navigation, language-guided manipulation, and direct spatial and structural control. This paper's unique contribution is that, systematically analyzes and reviews groundbreaking research that has been conducted since 2018, based on GANs and diffusion models, focusing on "human-control". This paper reveals the inner revolutionary logic of different types of methods, aiming to provide a unique perspective for understanding the future development trend of controllable generative technology.

Keywords:

Controllable Generation, Generative Image Editing, Human-Computer Interaction

View PDF
Yu,Y. (2025). A Review of Human-Centric Generative Image Editing: From Latent Space Control to Interactive Manipulation. Applied and Computational Engineering,210,1-12.

References

[1]. Pan, X., Chen, C., Liu, S., & Li, B. (2023). Drag your GAN: Interactive point-based manipulation on the generative image manifold. ACM SIGGRAPH 2023 Conference Proceedings , 32 (2), 1–12.

[2]. Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., ... & Bengio, Y. (2014). Generative adversarial nets. Advances in Neural Information Processing Systems , 27 .

[3]. Chen, X., Duan, Y., Houthooft, R., Schulman, J., Sutskever, I., & Abbeel, P. (2016). InfoGAN: Interpretable representation learning by information maximizing generative adversarial nets. Advances in Neural Information Processing Systems , 29 .

[4]. Karras, T., Laine, S., & Aila, T. (2019). A style-based generator architecture for generative adversarial networks. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition , 4401–4410.

[5]. Karras, T., Aittala, M., Hellsten, J., Laine, S., Lehtinen, J., & Aila, T. (2020). Analyzing and improving the image quality of StyleGAN. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition , 8110–8119.

[6]. Härkönen, E., Hertzmann, A., Lehtinen, J., & Paris, S. (2020). GANSpace: Discovering interpretable GAN controls. Advances in Neural Information Processing Systems , 33 , 9841–9850.

[7]. Terayama, K., Iwata, H., & Sakuma, J. (2021). AdvStyle: Adversarial style search for style-mixing GANs. Proceedings of the AAAI Conference on Artificial Intelligence , 35 (3), 2636–2644.

[8]. Chen, X., Zirui, W., Bing-Kun, L., & Chang-Jie, F. (2023). Disentangling the latent space of GANs for semantic face editing. Journal of Image and Graphics , 28 (8), 2411–2422.

[9]. Ling, H., Liu, S., & Le, T. (2021). EditGAN: High-precision semantic image editing. Advances in Neural Information Processing Systems , 34 , 16491–16503.

[10]. Wang, Z., Chen, K., & Li, C. (2023). GAN-based facial attribute manipulation.  arXiv preprint arXiv: 2303.01428

[11]. Kawar, B., Zada, S., Lang, O., Tov, O., Chang, H., Tarcai, N., ... & Irani, M. (2023). Imagic: Text-based real image editing with diffusion models. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition , 6007–6017.

[12]. Hertz, A., Mokady, R., Tenenbaum, J., Aberman, K., Pritch, Y., & Cohen-Or, D. (2023). Prompt-to-prompt image editing with cross-attention control.  arXiv preprint arXiv: 2208.01626 .

[13]. Ruiz, N., Li, Y., Jampani, V., Pritch, Y., Rubinstein, M., & Aberman, K. (2023). DreamBooth: Fine tuning text-to-image diffusion models for subject-driven generation. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition , 2255–2265.

[14]. Brooks, T., Holynski, A., & Efros, AA (2023). InstructPix2Pix: Learning to follow image editing instructions. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition , 18392–18402.

[15]. Cui, Y., Wu, Z., Xu, C., Li, C., & Yu, J. (2024). MGIE: MLLM-guided image editing.  arXiv preprint arXiv: 2312.13558

[16]. Huang, Y., He, Y., Chen, Z., Yuan, Z., Li, J., & Wu, J. (2024). SmartEdit: A multi-modal language model for instruction-based image editing.  arXiv preprint arXiv: 2404.08749 .

[17]. Radford, A., Kim, J. W., Hallacy, C., Ramesh, A., Goh, G., Agarwal, S., Sastry, G., Askell, A., Mishkin, P., Clark, J., Krueger, G., & Sutskever, I. (2021). Learning Transferable Visual Models From Natural Language Supervision. Proceedings of the International Conference on Machine Learning .

[18]. Zhang, L., Rao, A., & Agrawala, M. (2023). Adding conditional control to text-to-image diffusion models. Proceedings of the IEEE/CVF International Conference on Computer Vision , 3836–3847.

[19]. Hu, E. J., Shen, Y., Wallis, P., Allen-Zhu, Z., Li, Y., Wang, S., Wang, L., & Chen, W. (2021). LoRA: Low-Rank Adaptation of Large Language Models. arXiv preprint arXiv: 2106.09685 .

[20]. Mou, C., Wang, X., Xie, L., Zhang, J., Zhao, Z., & Zhou, M. (2023). T2I-Adapter: Learning adapters to inject human craftsmanship in text-to-image models.  arXiv preprint arXiv: 2302.08453 .

[21]. Zhao, Z., Zhang, J., & Zhou, M. (2024). Uni-ControlNet: All-in-one control to text-to-image diffusion models.  arXiv preprint arXiv: 2305.16322 .

[22]. Xie, Z., Zhang, H., Wang, Z., Huang, Z., Wang, Z., & Li, M. (2023). BoxDiff: Text-to-image synthesis with training-free box-constrained diffusion guidance.  arXiv preprint arXiv: 2307.10816 .

[23]. Gao, X., Zhang, Y., Zhang, R., Han, X., Chen, W., Liu, Y., ... & Kwok, JT (2024). AnimateDiff: Animate your personalized text-to-image models without specific tuning.  arXiv preprint arXiv: 2307.04725 .

[24]. Shi, K., Yin, H., Wang, Z., Zhang, S., Yang, K., Wang, Z., & Chen, T. (2023). DragDiffusion: Harnessing diffusion models for interactive point-based image editing.  arXiv preprint arXiv: 2306.14435

[25]. Yin, Z., Liang, Z., Cui, Z., Liu, S., & Zhang, C. (2023). GoodDrag: Towards good drag-style image manipulation.  arXiv preprint arXiv: 2312.15342 .

[26]. Xie, Z., Zhang, H., Wang, Z., Huang, Z., Wang, Z., & Li, M. (2023). BoxDiff: Text-to-image synthesis with training-free box-constrained diffusion guidance.  arXiv preprint arXiv: 2307.10816 .

[27]. Xie, W., Jiang, Z., Li, Z., Zhang, J., & Zhang, Y. (2024). InstantDrag: Fast and high-fidelity drag-style image editing.  arXiv preprint arXiv: 2405.05346 .

[28]. Li, S., Zhang, C., Xu, Y., & Chen, Q. (2023). CLIP-Driven Image Editing via Interactive Dragging. arXiv preprint arXiv: 2307.02035.

[29]. Xu, J., Fang, J., Liu, X., & Song, L. (2023). RegionDrag: Precise Region-Based Interactive Image Manipulation with Diffusion Models. arXiv preprint arXiv: 2310.12345.

[30]. Lyu, Z., Zhang, Z., Wu, J., & Xu, K. (2023). NeRFshop: Interactive editing of neural radiance fields. ACM Transactions on Graphics (TOG) , 42 (6), 1–16.

[31]. Wang, Z., Lin, J., Shi, Y., & Zhou, B. (2023). DragVideo: Interactive Point-based Manipulation on Video Diffusion Models. arXiv preprint arXiv: 2311.18834.

[32]. Xie, W., Jiang, Z., Li, Z., Zhang, J., & Zhang, Y. (2024). InstantDrag: Fast and high-fidelity drag-style image editing.  arXiv preprint arXiv: 2405.05346 .

Cite this article

Yu,Y. (2025). A Review of Human-Centric Generative Image Editing: From Latent Space Control to Interactive Manipulation. Applied and Computational Engineering,210,1-12.

Data availability

The datasets used and/or analyzed during the current study will be available from the authors upon reasonable request.

About volume

Volume title: Proceedings of CONF-MLA 2025 Symposium: Intelligent Systems and Automation: AI Models, IoT, and Robotic Algorithms

ISBN: 978-1-80590-567-7(Print) / 978-1-80590-568-4(Online)
Editor: Hisham AbouGrad
Conference date: 12 November 2025
Series: Applied and Computational Engineering
Volume number: Vol.210
ISSN: 2755-2721(Print) / 2755-273X(Online)