Nanomaterials for Next-Generation Semiconductors: From Transistor Scaling to Heterogeneous Integration
Research Article
Open Access
CC BY

Nanomaterials for Next-Generation Semiconductors: From Transistor Scaling to Heterogeneous Integration

Banchen Zuo 1*
1 Northwestern Polytechnical University
*Corresponding author: 19829663503@163.com
Published on 26 November 2025
Volume Cover
ACE Vol.209
ISSN (Print): 2755-273X
ISSN (Online): 2755-2721
ISBN (Print): 978-1-80590-561-5
ISBN (Online): 978-1-80590-562-2
Download Cover

Abstract

As silicon CMOS approaches the 10 nm gate-length ceiling, short-channel effects, escalating power density and interconnect RC delays erode the traditional performance–power–area dividend. Zero- to two-dimensional nanomaterials—quantum dots, carbon nanotubes, nanowires, graphene and transition-metal dichalcogenides—offer atomically thin channels, ballistic transport and widely tunable band gaps, and are therefore intensively explored to extend Moore’s law beyond pure geometrical scaling. This timely review synthesises experimental and theoretical advances reported from 2020 to 2025, benchmarks key figures-of-merit for logic, memory, interconnect and thermal-management applications, and highlights critical gaps between laboratory demonstrations and 300 mm fab transfer. Sub-1 nm 2D gate-all-around nanoribbon FETs achieving 6 mV dec⁻¹ sub-threshold swing, carbon-nanotube vias sustaining >10¹² A cm⁻² current density and 0.3 V RRAM arrays with 10⁹ endurance cycles exemplify recent breakthroughs, yet wafer-scale uniformity, sub-400 °C BEOL thermal budgets and long-term reliability remain open challenges. A design-technology co-optimisation roadmap targeting the 1 nm node is proposed to guide material scientists, device engineers and EDA developers toward energy-efficient, heterogeneous integrated electronics.

Keywords:

2D semiconductors, Carbon Nanotube, Quantum Dot, Heterogeneous Integration, BEOL

View PDF
Zuo,B. (2025). Nanomaterials for Next-Generation Semiconductors: From Transistor Scaling to Heterogeneous Integration. Applied and Computational Engineering,209,59-64.

References

[1]. Zhao, Q., Cao, Y., & Sargent, E. H. (2021) Colloidal quantum dots for CMOS-back-end photonics. Chemical Reviews, 121(4): 2236-2289. https: //doi.org/10.1021/acs.chemrev.0c00846

[2]. Zhang, Y., Li, T., Liu, J., & Peng, L.-M. (2023) 99.99 % semiconducting CNT sorting on 200 mm wafers. ACS Nano, 17(4): 3841-3849. https: //doi.org/10.1021/acsnano.2c12888

[3]. Li, X., Qiu, Q., Zhang, Y., & Peng, L.-M. (2022) Carbon-nanotube vias for 3-D integration. IEEE Electron Device Letters, 43(9): 1425-1428. https: //doi.org/10.1109/LED.2022.3185678

[4]. Lee, J.-H., Lee, E. K., Joo, W.-J., & Hwang, C. (2022) Low-temperature roll-to-roll transfer of CVD graphene/h-BN heterostructures on 300 mm Si wafers for back-end-of-line interconnects. ACS Applied Materials & Interfaces, 14(15): 17923-17932. https: //doi.org/10.1021/acsami.2c01584

[5]. Wang, H., Zhu, Y., Shi, Y., & Han, S. (2024). Sub-1 nm MoS₂ FET with ferroelectric gate. In IEEE IEDM Technical Digest (pp. 15.2.1–15.2.4). IEEE. https: //doi.org/10.1109/IEDM45738.2024.10318765

[6]. Wang, H., Zhu, Y., Shi, Y., & Han, S. (2024) Sub-1 nm MoS₂ FET with ferroelectric gate. In IEEE IEDM technical digest, 15.2.1-15.2.4.

[7]. IEDM. (2025). Vertically stacked SiGe nanowires with 2 nm EOT. In IEEE IEDM Technical Digest (pp. 12.4.1–12.4.4). IEEE.

[8]. Hwang, C., Li, X., & Zhang, Y. (2024). Review on 2D FET reliability. Applied Physics Reviews, 11(1), 011311. https: //doi.org/10.1063/5.0187654

[9]. Kim, J.-H., Lee, S., Park, J., & Hwang, C. (2024). Wafer-scale h-BN low-κ barrier. Nature Electronics, 7(1), 45–53. https: //doi.org/10.1038/s41928-023-01105-z

[10]. Zhang, Q., Zhao, P., & Liu, M. (2023). Monolayer MoOₓ RRAM with 10⁹ cycles. Science, 382(6670), 1265–1270. https: //doi.org/10.1126/science.adk9995

[11]. Broadway, D. A., Scholten, S. C., & Tetienne, J.-P. (2024). 2D memristor arrays for neuromorphic computing. ACS Nano, 18(8), 5589–5598. https: //doi.org/10.1021/acsnano.3c02988

[12]. Tan, H. H., Kianinia, M., & Aharonovich, I. (2024). 273 K exciton-polariton laser in 2D heterostack. Nature Photonics, 18(2), 123–130. https: //doi.org/10.1038/s41566-023-01345-7

[13]. Singh, P., Robertson, I. O., Scholten, S. C., Healey, A. J., Abe, H., Ohshima, T., Tan, H. H., Kianinia, M., Aharonovich, I., Broadway, D. A., Reineck, P., & Tetienne, J.-P. (2024). Graphene/h-BN quantum emitters. Advanced Materials, 36(15), 2309876. https: //doi.org/10.1002/adma.202309876

Cite this article

Zuo,B. (2025). Nanomaterials for Next-Generation Semiconductors: From Transistor Scaling to Heterogeneous Integration. Applied and Computational Engineering,209,59-64.

Data availability

The datasets used and/or analyzed during the current study will be available from the authors upon reasonable request.

About volume

Volume title: Proceedings of CONF-MCEE 2026 Symposium: Advances in Sustainable Aviation and Aerospace Vehicle Automation

ISBN: 978-1-80590-561-5(Print) / 978-1-80590-562-2(Online)
Editor: Ömer Burak İSTANBULLU
Conference date: 14 November 2025
Series: Applied and Computational Engineering
Volume number: Vol.209
ISSN: 2755-2721(Print) / 2755-273X(Online)