References
[1]. Jayaram, H., Kolko, M., Friedman, D. S., & Gazzard, G. (2023). Glaucoma: Now and beyond. The Lancet, 402(10414), 1788–1801. https: //doi.org/10.1016/S0140-6736(23)01523-7
[2]. Schuster, A. K., Erb, C., Hoffmann, E. M., Dietlein, T., & Pfeiffer, N. (2020). The diagnosis and treatment of glaucoma. Deutsches Ärzteblatt International, 117(13), 225–234. https: //doi.org/10.3238/arztebl.2020.0225
[3]. Mursch-Edlmayr, A. S., Ng, W. S., Diniz-Filho, A., et al. (2020). Artificial intelligence algorithms to diagnose glaucoma and detect glaucoma progression: Translation to clinical practice. Translational Vision Science & Technology, 9(2), 55. https: //doi.org/10.1167/tvst.9.2.55
[4]. Ashtari-Majlan, M., Dehshibi, M. M., & Masip, D. (2023). Deep learning and computer vision for glaucoma detection: A review. arXiv preprint arXiv: 2307.16528. https: //doi.org/10.48550/arXiv.2307.16528
[5]. Panwar, N., Huang, P., Lee, J., Keane, P. A., Chuan, T. S., Richhariya, A., ... & Agrawal, R. (2016). Fundus photography in the 21st century—A review of recent technological advances and their implications for worldwide healthcare. Telemedicine and e-Health, 22(3), 198–208. https: //doi.org/10.1089/tmj.2015.0068
[6]. Raghavendra, U., Fujita, H., Bhandary, S. V., Gudigar, A., Tan, J. H., & Acharya, U. R. (2018). Deep convolution neural network for accurate diagnosis of glaucoma using digital fundus images. Information Sciences, 441, 41–49. https: //doi.org/10.1016/j.ins.2018.02.074
[7]. Deperlioglu, O., Kose, U., Gupta, D., Khanna, A., Giampaolo, F., & Fortino, G. (2022). Explainable framework for glaucoma diagnosis by image processing and convolutional neural network synergy: Analysis with doctor evaluation. Future Generation Computer Systems, 129, 152–169. https: //doi.org/10.1016/j.future.2021.11.011
[8]. Chen, X., Xu, Y., Wong, D. W. K., Wong, T. Y., & Liu, J. (2015, August). Glaucoma detection based on deep convolutional neural network. In 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) (pp. 715–718). IEEE. https: //doi.org/10.1109/EMBC.2015.7318392
[9]. Christopher, M., Belghith, A., Bowd, C., Proudfoot, J. A., Goldbaum, M. H., Weinreb, R. N., ... & Zangwill, L. M. (2018). Performance of deep learning architectures and transfer learning for detecting glaucomatous optic neuropathy in fundus photographs. Scientific Reports, 8(1), 16685. https: //doi.org/10.1038/s41598-018-35044-9
[10]. Shibata, N., Tanito, M., Mitsuhashi, K., Fujino, Y., Matsuura, M., Murata, H., & Asaoka, R. (2018). Development of a deep residual learning algorithm to screen for glaucoma from fundus photography. Scientific Reports, 8(1), 14665. https: //doi.org/10.1038/s41598-018-32861-5
[11]. Zhao, R., Liao, W., Zou, B., Chen, Z., & Li, S. (2019, July). Weakly-supervised simultaneous evidence identification and segmentation for automated glaucoma diagnosis. In Proceedings of the AAAI Conference on Artificial Intelligence, 33(1), 809–816. https: //doi.org/10.1609/aaai.v33i01.3301809
[12]. Diaz-Pinto, A., Colomer, A., Naranjo, V., Morales, S., Xu, Y., & Frangi, A. F. (2019). Retinal image synthesis and semi-supervised learning for glaucoma assessment. IEEE Transactions on Medical Imaging, 38(9), 2211–2218. https: //doi.org/10.1109/TMI.2019.2902391
[13]. Navab, N., Hornegger, J., Wells, W. M., & Frangi, A. (Eds.). (2015). Medical image computing and computer-assisted intervention–MICCAI 2015: 18th international conference, Munich, Germany, October 5–9, 2015, proceedings, part III (Vol. 9351). Springer. https: //doi.org/10.1007/978-3-319-24574-4
[14]. Chai, Y., Liu, H., & Xu, J. (2018). Glaucoma diagnosis based on both hidden features and domain knowledge through deep learning models. Knowledge-Based Systems, 161, 147–156.
[15]. Akter, N., Fletcher, J., Perry, S., Simunovic, M. P., Briggs, N., & Roy, M. (2022). Glaucoma diagnosis using multi-feature analysis and a deep learning technique. Scientific Reports, 12(1), 8064. https: //doi.org/10.1038/s41598-022-12122-9
[16]. Medeiros, F. A., Jammal, A. A., & Thompson, A. C. (2019). From machine to machine: an OCT-trained deep learning algorithm for objective quantification of glaucomatous damage in fundus photographs. Ophthalmology, 126(4), 513-521.