Recent Process of 2D Graphene for High-Energy-Density Lithium Anode
Research Article
Open Access
CC BY

Recent Process of 2D Graphene for High-Energy-Density Lithium Anode

Haoyu Yang 1*
1 Jinling High School Hexi Campus
*Corresponding author: 2021635775@qq.com
Published on 26 November 2025
Volume Cover
ACE Vol.209
ISSN (Print): 2755-273X
ISSN (Online): 2755-2721
ISBN (Print): 978-1-80590-561-5
ISBN (Online): 978-1-80590-562-2
Download Cover

Abstract

Lithium batteries power our daily devices, but they're hitting a wall. The graphite material in today's batteries can only store so much energy. Lithium metal promises a breakthrough - it can store ten times more power in the same space. The catch? It grows dangerous spikes called dendrites during use, has stability issues with its protective layer, and swells like a balloon. Surprisingly, graphene - the wonder material made of carbon sheets - might hold the key to taming lithium metal. This paper explores three smart ways researchers are using graphene: building 3D sponge-like structures to safely house lithium, creating artificial protective coatings, and designing surfaces that guide lithium to grow evenly. The results show graphene could be the missing piece for next-generation batteries.

Keywords:

Three-Dimensional Graphene, Artificial SEI Layer, High-Energy-Density Lithium Anode

View PDF
Yang,H. (2025). Recent Process of 2D Graphene for High-Energy-Density Lithium Anode. Applied and Computational Engineering,209,1-6.

References

[1]. Cheng, X. B., Zhang, R., Zhao, C. Z., & Zhang, Q. (2017). Toward safe lithium metal anode in rechargeable batteries: a review. Chemical reviews, 117(15), 10403-10473.

[2]. Lin, D., Liu, Y., & Cui, Y. (2017). Reviving the lithium metal anode for high-energy batteries. Nature nanotechnology, 12(3), 194-206.

[3]. Liu, J., Bao, Z., Cui, Y., Dufek, E. J., Goodenough, J. B., Khalifah, P., ... & Zhang, J. G. (2019). Pathways for practical high-energy long-cycling lithium metal batteries. Nature Energy, 4(3), 180-186.

[4]. Liu, W.; Xia, Y.; Wang, W.; et al. A biomimetic graphene scaffold for stable lithium metal anodes. Adv. Energy Mater. 2021, 11, 2100205.

[5]. Yun, Q., He, Y. B., Lv, W., Zhao, Y., Li, B., Kang, F., & Yang, Q. H. (2016). Chemical dealloying derived 3D porous current collector for Li metal anodes. Advanced Materials, 28(32), 6932-6939.

[6]. Wang, H.; Li, Y.; Li, Y.; et al. Graphene‐based composites for electrochemical energy storage. Energy Storage Mater. 2019, 24, 22–31.

[7]. Yang, C., Yao, Y., He, S., Xie, H., Hitz, E., & Hu, L. (2017). Ultrafine silver nanoparticles for seeded lithium deposition toward stable lithium metal anode. Advanced materials, 29(38), 1702714.

[8]. Jin, C., Sheng, O., Luo, J., Yuan, H., Fang, C., Zhang, W., ... & Tao, X. (2017). 3D lithium metal embedded within lithiophilic porous matrix for stable lithium metal batteries. Nano Energy, 37, 177-186.

[9]. Wang, J.; Wang, H.; Zhang, J.; et al. Janus graphene films for lithium metal anodes. ACS Nano 2022, 16, 3456–3465.

[10]. Chen, K.; Pathak, R.; Gurung, A.; et al. A novel 3D graphene foam for ultrahigh-rate lithium metal anodes. Nat. Commun. 2022, 13, 1–12.

[11]. Zhang, R., Li, N. W., Cheng, X. B., Yin, Y. X., Zhang, Q., & Guo, Y. G. (2017). Advanced micro/nanostructures for lithium metal anodes. Advanced Science, 4(3), 1600445.

[12]. Liu, Y., Lin, D., Yuen, P. Y., Liu, K., Xie, J., Dauskardt, R. H., & Cui, Y. (2016). An artificial solid electrolyte interphase with high Li-ion conductivity, mechanical strength, and flexibility for stable lithium metal anodes. Advanced Materials, 29(10).

[13]. Huang, G., Han, J., Zhang, F., Wang, Z., Kashani, H., Watanabe, K., & Chen, M. (2019). Lithiophilic 3D nanoporous nitrogen‐doped graphene for dendrite‐free and ultrahigh‐rate lithium‐metal anodes. Advanced materials, 31(2), 1805334.

[14]. Zhao, H.; Deng, N.; Yan, J.; et al. Recent advances in optimizing the microstructure of Si-based anodes for lithium-ion batteries. RSC Adv. 2018, 8, 2610–2619.

[15]. Li, N. W., Shi, Y., Yin, Y. X., Zeng, X. X., Li, J. Y., Li, C. J., ... & Guo, Y. G. (2018). A flexible solid electrolyte interphase layer for long‐life lithium metal anodes. Angewandte Chemie, 130(6), 1521-1525.

[16]. Xu, R., Zhang, X. Q., Cheng, X. B., Peng, H. J., Zhao, C. Z., Yan, C., & Huang, J. Q. (2018). Artificial soft–rigid protective layer for dendrite‐free lithium metal anode. Advanced Functional Materials, 28(8), 1705838.

[17]. Zheng, G., Lee, S. W., Liang, Z., Lee, H. W., Yan, K., Yao, H., ... & Cui, Y. (2014). Interconnected hollow carbon nanospheres for stable lithium metal anodes. Nature nanotechnology, 9(8), 618-623.

[18]. Yu, Z., Cui, Y., & Bao, Z. (2020). Design principles of artificial solid electrolyte interphases for lithium-metal anodes. Cell Reports Physical Science, 1(7).

[19]. Li, T., Zhang, X. Q., Shi, P., & Zhang, Q. (2019). Fluorinated solid-electrolyte interphase in high-voltage lithium metal batteries. Joule, 3(11), 2647-2661.

[20]. Zhou, T., Shen, J., Wang, Z., Liu, J., Hu, R., Ouyang, L., ... & Zhu, M. (2020). Regulating lithium nucleation and deposition via MOF‐derived Co@ C‐modified carbon cloth for stable Li metal anode. Advanced Functional Materials, 30(14), 1909159.

[21]. Huang, G.; Han, J.; Zhang, F.; et al. Lithiophilic 3D porous CuZn current collector for stable lithium metal batteries. ACS Energy Lett. 2019, 4, 109–115.

[22]. Zhang, Y., Wang, C., Pastel, G., Kuang, Y., Xie, H., Li, Y., ... & Hu, L. (2018). 3D wettable framework for dendrite‐free alkali metal anodes. Advanced Energy Materials, 8(18), 1800635.

[23]. Chang, J., Shang, J., Sun, Y., Ono, L. K., Wang, D., Ma, Z., Huang, Q., Chen, D., Liu, G., Cui, Y., Qi, Y., & Zheng, Z. (2018). Flexible and stable high-energy lithium-sulfur full batteries with only 100% oversized lithium. Nature communications, 9(1), 4480.

[24]. Liu, F., Xu, R., Hu, Z., Ye, S., Zeng, S., Yao, Y., ... & Yu, Y. (2019). Regulating lithium nucleation via CNTs modifying carbon cloth film for stable Li metal anode. Small, 15(5), 1803734.

[25]. Xu, Y., Li, T., Wang, L., & Kang, Y. (2019). Interlayered dendrite‐free lithium plating for high‐performance lithium‐metal batteries. Advanced Materials, 31(29), 1901662.

[26]. Li, S., Liu, Q., Zhou, J., Pan, T., Gao, L., Zhang, W., ... & Lu, Y. (2019). Hierarchical Co3O4 nanofiber–carbon sheet skeleton with superior Na/Li‐philic property enabling highly stable alkali metal batteries. Advanced Functional Materials, 29(19), 1808847.

[27]. Xiang, J., Yuan, L., Shen, Y., Cheng, Z., Yuan, K., Guo, Z., ... & Huang, Y. (2018). Improved rechargeability of lithium metal anode via controlling lithium‐ion flux. Advanced Energy Materials, 8(36), 1802352.

[28]. Qiu, H., Tang, T., Asif, M., Huang, X., & Hou, Y. (2019). 3D porous Cu current collectors derived by hydrogen bubble dynamic template for enhanced Li metal anode performance. Advanced Functional Materials, 29(19), 1808468.

Cite this article

Yang,H. (2025). Recent Process of 2D Graphene for High-Energy-Density Lithium Anode. Applied and Computational Engineering,209,1-6.

Data availability

The datasets used and/or analyzed during the current study will be available from the authors upon reasonable request.

About volume

Volume title: Proceedings of CONF-MCEE 2026 Symposium: Advances in Sustainable Aviation and Aerospace Vehicle Automation

ISBN: 978-1-80590-561-5(Print) / 978-1-80590-562-2(Online)
Editor: Ömer Burak İSTANBULLU
Conference date: 14 November 2025
Series: Applied and Computational Engineering
Volume number: Vol.209
ISSN: 2755-2721(Print) / 2755-273X(Online)