References
[1]. Cheng, X. B., Zhang, R., Zhao, C. Z., & Zhang, Q. (2017). Toward safe lithium metal anode in rechargeable batteries: a review. Chemical reviews, 117(15), 10403-10473.
[2]. Lin, D., Liu, Y., & Cui, Y. (2017). Reviving the lithium metal anode for high-energy batteries. Nature nanotechnology, 12(3), 194-206.
[3]. Liu, J., Bao, Z., Cui, Y., Dufek, E. J., Goodenough, J. B., Khalifah, P., ... & Zhang, J. G. (2019). Pathways for practical high-energy long-cycling lithium metal batteries. Nature Energy, 4(3), 180-186.
[4]. Liu, W.; Xia, Y.; Wang, W.; et al. A biomimetic graphene scaffold for stable lithium metal anodes. Adv. Energy Mater. 2021, 11, 2100205.
[5]. Yun, Q., He, Y. B., Lv, W., Zhao, Y., Li, B., Kang, F., & Yang, Q. H. (2016). Chemical dealloying derived 3D porous current collector for Li metal anodes. Advanced Materials, 28(32), 6932-6939.
[6]. Wang, H.; Li, Y.; Li, Y.; et al. Graphene‐based composites for electrochemical energy storage. Energy Storage Mater. 2019, 24, 22–31.
[7]. Yang, C., Yao, Y., He, S., Xie, H., Hitz, E., & Hu, L. (2017). Ultrafine silver nanoparticles for seeded lithium deposition toward stable lithium metal anode. Advanced materials, 29(38), 1702714.
[8]. Jin, C., Sheng, O., Luo, J., Yuan, H., Fang, C., Zhang, W., ... & Tao, X. (2017). 3D lithium metal embedded within lithiophilic porous matrix for stable lithium metal batteries. Nano Energy, 37, 177-186.
[9]. Wang, J.; Wang, H.; Zhang, J.; et al. Janus graphene films for lithium metal anodes. ACS Nano 2022, 16, 3456–3465.
[10]. Chen, K.; Pathak, R.; Gurung, A.; et al. A novel 3D graphene foam for ultrahigh-rate lithium metal anodes. Nat. Commun. 2022, 13, 1–12.
[11]. Zhang, R., Li, N. W., Cheng, X. B., Yin, Y. X., Zhang, Q., & Guo, Y. G. (2017). Advanced micro/nanostructures for lithium metal anodes. Advanced Science, 4(3), 1600445.
[12]. Liu, Y., Lin, D., Yuen, P. Y., Liu, K., Xie, J., Dauskardt, R. H., & Cui, Y. (2016). An artificial solid electrolyte interphase with high Li-ion conductivity, mechanical strength, and flexibility for stable lithium metal anodes. Advanced Materials, 29(10).
[13]. Huang, G., Han, J., Zhang, F., Wang, Z., Kashani, H., Watanabe, K., & Chen, M. (2019). Lithiophilic 3D nanoporous nitrogen‐doped graphene for dendrite‐free and ultrahigh‐rate lithium‐metal anodes. Advanced materials, 31(2), 1805334.
[14]. Zhao, H.; Deng, N.; Yan, J.; et al. Recent advances in optimizing the microstructure of Si-based anodes for lithium-ion batteries. RSC Adv. 2018, 8, 2610–2619.
[15]. Li, N. W., Shi, Y., Yin, Y. X., Zeng, X. X., Li, J. Y., Li, C. J., ... & Guo, Y. G. (2018). A flexible solid electrolyte interphase layer for long‐life lithium metal anodes. Angewandte Chemie, 130(6), 1521-1525.
[16]. Xu, R., Zhang, X. Q., Cheng, X. B., Peng, H. J., Zhao, C. Z., Yan, C., & Huang, J. Q. (2018). Artificial soft–rigid protective layer for dendrite‐free lithium metal anode. Advanced Functional Materials, 28(8), 1705838.
[17]. Zheng, G., Lee, S. W., Liang, Z., Lee, H. W., Yan, K., Yao, H., ... & Cui, Y. (2014). Interconnected hollow carbon nanospheres for stable lithium metal anodes. Nature nanotechnology, 9(8), 618-623.
[18]. Yu, Z., Cui, Y., & Bao, Z. (2020). Design principles of artificial solid electrolyte interphases for lithium-metal anodes. Cell Reports Physical Science, 1(7).
[19]. Li, T., Zhang, X. Q., Shi, P., & Zhang, Q. (2019). Fluorinated solid-electrolyte interphase in high-voltage lithium metal batteries. Joule, 3(11), 2647-2661.
[20]. Zhou, T., Shen, J., Wang, Z., Liu, J., Hu, R., Ouyang, L., ... & Zhu, M. (2020). Regulating lithium nucleation and deposition via MOF‐derived Co@ C‐modified carbon cloth for stable Li metal anode. Advanced Functional Materials, 30(14), 1909159.
[21]. Huang, G.; Han, J.; Zhang, F.; et al. Lithiophilic 3D porous CuZn current collector for stable lithium metal batteries. ACS Energy Lett. 2019, 4, 109–115.
[22]. Zhang, Y., Wang, C., Pastel, G., Kuang, Y., Xie, H., Li, Y., ... & Hu, L. (2018). 3D wettable framework for dendrite‐free alkali metal anodes. Advanced Energy Materials, 8(18), 1800635.
[23]. Chang, J., Shang, J., Sun, Y., Ono, L. K., Wang, D., Ma, Z., Huang, Q., Chen, D., Liu, G., Cui, Y., Qi, Y., & Zheng, Z. (2018). Flexible and stable high-energy lithium-sulfur full batteries with only 100% oversized lithium. Nature communications, 9(1), 4480.
[24]. Liu, F., Xu, R., Hu, Z., Ye, S., Zeng, S., Yao, Y., ... & Yu, Y. (2019). Regulating lithium nucleation via CNTs modifying carbon cloth film for stable Li metal anode. Small, 15(5), 1803734.
[25]. Xu, Y., Li, T., Wang, L., & Kang, Y. (2019). Interlayered dendrite‐free lithium plating for high‐performance lithium‐metal batteries. Advanced Materials, 31(29), 1901662.
[26]. Li, S., Liu, Q., Zhou, J., Pan, T., Gao, L., Zhang, W., ... & Lu, Y. (2019). Hierarchical Co3O4 nanofiber–carbon sheet skeleton with superior Na/Li‐philic property enabling highly stable alkali metal batteries. Advanced Functional Materials, 29(19), 1808847.
[27]. Xiang, J., Yuan, L., Shen, Y., Cheng, Z., Yuan, K., Guo, Z., ... & Huang, Y. (2018). Improved rechargeability of lithium metal anode via controlling lithium‐ion flux. Advanced Energy Materials, 8(36), 1802352.
[28]. Qiu, H., Tang, T., Asif, M., Huang, X., & Hou, Y. (2019). 3D porous Cu current collectors derived by hydrogen bubble dynamic template for enhanced Li metal anode performance. Advanced Functional Materials, 29(19), 1808468.