References
[1]. Cui, X. (2023). A review on modification methods of thermal interface materials. Journal of Materials Science, 58(25), 10281-10305. https: //doi.org/10.1007/s10853-023-08667-1
[2]. Smith, J., Wang, Y., & Johnson, L. (2022). Copper nanowires for enhanced thermal conductivity in polymer composites. ACS Sustainable Chemistry & Engineering, 10(15), 4850-4858. https: //doi.org/10.1021/acssuschemeng.1c08010
[3]. Zhang, H., & Chen, L. (2021). Carbon-based materials for thermal management: A comprehensive review. Chemical Reviews, 121(12), 7350-7390. https: //doi.org/10.1021/acs.chemrev.0c01250
[4]. He, H., Zhang, Y., Zeng, X., Ye, Z., Zhang, C., Liang, T., Li, J., Hu, Q., & Zhang, P. (2021). Thermally conductive and stretchable thermal interface materials prepared via vertical orientation of flake graphite. Composites Communications, 26, 100795. https: //doi.org/10.1016/j.coco.2021.100795
[5]. Lee, S., & Park, H. (2022). Surface molecular design for enhanced interfacial thermal transport. Nature Reviews Chemistry, 6(5), 341-358. https: //doi.org/10.1038/s41570-022-00378-6
[6]. Wang, F., Liu, G., & Zhou, J. (2023). Structural design of a 3D vertically aligned network for high-performance lithium-sulfur batteries and thermal interface materials. Advanced Materials, 35(18), 2209156. https: //doi.org/10.1002/adma.202209156
[7]. Hao, M., Kumar, A., Hodson, S. L., Zemlyanov, D., He, P., & Fisher, T. S. (2017). Brazed Carbon Nanotube Arrays: Decoupling Thermal Conductance and Mechanical Rigidity. Advanced Materials Interfaces, 4(5), 1601042. https: //doi.org/10.1002/admi.201601042