References
[1]. Geng, (2016), A Review on Organic Spintronic Materials and Devices, 10.1016/j.jsamd.2016.05.002.
[2]. Bergenti , (2011), Organic Spintronics, 10.1098/rsta.2011.0155.
[3]. Naber, (2007), Organic Spintronics, 10.1088/0022-3727/40/12/R01
[4]. Sun , (2014), The First Decade of Organic Spintronics Research, 10.1039/C3CC47126H.
[5]. Zhan , Fahlman, (2012), The Study of Organic Semiconductor/Ferromagnet Interfaces in Organic Spintronics, 10.1002/polb.23157.
[6]. Dong (2019), Surface Engineering of Phosphorene Nanoribbons by Transition Metal Heteroatoms for Spintronics, 10.1039/C9CP00072K.
[7]. Hu, (2023), Unlocking the Charge Doping Effect in Softly Intercalated Ultrathin Ferromagnetic Superlattice, 10.1016/j.esci.2023.100117.
[8]. Abhervé, (2023), Chirality Versus Symmetry, 10.1002/adma.202305784.
[9]. He, (2018), Interfacial Effects on the Microstructures and Magnetoresistance of Ni80Fe20/P3HT/Fe Organic Spin Valves, 10.1016/j.jallcom.2018.08.024.
[10]. Xie , Qin, (2016), Multiferroic Nanohybrid MAPbI3/P3HT Nanowire Complex, 10.1021/acs.jpcc.6b09891.
[11]. Jiang, (2022), Room‐Temperature Ferromagnetism in Perylene Diimide Organic Semiconductor, 10.1002/adma.202108103.
[12]. Sun, (2015), Role of Thick‐Lithium Fluoride Layer in Energy Level Alignment at Organic/Metal Interface, 10.1002/admi.201400527.
[13]. Riminucci, (2018), Publisher’s Note, 10.1063/1.5038728.
[14]. Galbiati, (2012), Unveiling Self‐Assembled Monolayers’ Potential for Molecular Spintronics, 10.1002/adma.201203136.
[15]. Sun, (2014), Energy Level Alignment and Interactive Spin Polarization at Organic/Ferromagnetic Metal Interfaces for Organic Spintronics, 10.1016/j.orgel.2014.05.021.
[16]. Kitamura, (2012), Realization of Ohmic-like Contact between Ferromagnet and Rubrene Single Crystal, 10.1063/1.4745778.
[17]. Kitamura, (2011), Electrical Investigation of the Interface Band Structure in Rubrene Single-Crystal/Nickel Junction, 10.1063/1.3615704.
[18]. Yang, (2019), Achieving Large and Nonvolatile Tunable Magnetoresistance in Organic Spin Valves Using Electronic Phase Separated Manganites, 10.1038/s41467-019-11827-0.
[19]. Van Dyck , (2014), Fermi Level Pinning and Orbital Polarization Effects in Molecular Junctions, 10.1002/adfm.201400809.
[20]. Carlegrim, (2010), Characterization of the Ni/V(TCNE)x Interface for Hybrid Spintronics Applications, 10.1016/j.orgel.2010.03.001.
[21]. Blue, (2022), Scanning Tunneling Microscopy and Spectroscopy of NiTe2, 10.1016/j.susc.2022.122099.
[22]. Liljeroth , (2010), Single-Molecule Synthesis and Characterization of Metal−Ligand Complexes by Low-Temperature STM, 10.1016/j.susc.2022.122099.
[23]. Bratkovsky, Osipov, (2005), Efficient Spin Injection and Extraction in Modified Reverse and Forward Biased Ferromagnetic–Semiconductor Junctions and Low-Power Ultrafast Spin Injection Devices, 10.1007/s00339-004-3178-9.
[24]. Li, Yu, (2021), Innovation of Materials, Devices, and Functionalized Interfaces in Organic Spintronics, 10.1002/adfm.202100550 .
[25]. Devkota, (2016), Organic Spin Valves, 10.1002/adfm.201504209.
[26]. Meng, (2025), Room‐Temperature Organic Spintronic Devices with Wide Range Magnetocurrent Tuning and Multifunctionality via Electro‐Optical Compensation Strategy, 10.1002/adma.202417995.
[27]. Liang , (2012), Organic Magnetic Tunnel Junctions, 10.1103/PhysRevB.86.224419.
[28]. Soujanya, Deb, (2024), Interface Defect State Induced Spin Injection in Organic Magnetic Tunnel Junctions, 10.1063/5.0232653.
[29]. Goren , (2021), Metal Organic Spin Transistor, 10.1021/acs.nanolett.1c01865.
[30]. Naito, (2022), Organic Conductors, MDPI - Multidisciplinary Digital Publishing Institute.
[31]. Lu, (2024), Spintronic Phenomena and Applications in Hybrid Organic–Inorganic Perovskites, 10.1002/adfm.202314427.
[32]. Al‐Qatatsheh, (2023), Bridging Performance Gaps, 10.1002/qute.202300204.
[33]. Lach, (2012), Metal–Organic Hybrid Interface States of A Ferromagnet/Organic Semiconductor Hybrid Junction as Basis For Engineering Spin Injection in Organic Spintronics, 10.1002/adfm.201102297.
[34]. Ding, (2019), Organic Single-Crystal Spintronics, 10.1021/acsnano.9b04449.
[35]. Assis, (2022), High-Quality YIG Films Preparation by Metallo-Organic Decomposition and Their Use to Fabricate Spintronics Nanostructures by Focused Ion Beam, 10.1007/s13204-022-02503-9.