References
[1]. Hu, M., Strachan, J. P., Li, Z., Grafals, E. M., Davila, N., Graves, C., Lam, S., Ge, N., Yang, J. J. and Williams, R. S. (2016) Dot-product engine for neuromorphic computing: Programming 1T1M crossbar to accelerate matrix-vector multiplication. Proceedings of the 53rd ACM/EDAC/IEEE Design Automation Conference (DAC), 1–6.
[2]. Kim, J., Chen, J. and Wang, J.-P. (2019) Spin-transfer torque magnetic memory as a commodity memory device. IEEE Transactions on Magnetics, 55(5), 1–8.Manipatruni, S., Nikonov, D. E. and Young, I. A. (2018) Beyond CMOS computing with spin and polarization. Nature Physics, 14(4), 338–343.
[3]. Mikolajick, T., Slesazeck, S., Park, M. H. and Schroeder, U. (2018) Ferroelectric hafnium oxide for ferroelectric random-access memories and ferroelectric field-effect transistors. MRS Bulletin, 43(5), 340–346.
[4]. Takahashi, S. and Sakai, S. (2018) Embedded ferroelectric memory technology for energy-efficient computing. 2018 IEEE International Electron Devices Meeting (IEDM), 18.4.1–18.4.4.
[5]. Zhang, T., Li, Y. and Chen, C. L. P. (2018) Edge computing and its role in smart systems. IEEE Access, 6, 72622–72634.
[6]. Wong, H.-S. P., Lee, H.-Y., Yu, S., Chen, Y.-S., Wu, Y., Chen, P.-S., Lee, B., Chen, F. T. and Tsai, M.-J. (2012) Metal–oxide RRAM. Proceedings of the IEEE, 100(6), 1951–1970.
[7]. Apalkov, D., Dieny, B. and Slaughter, J. M. (2016) Magnetoresistive random access memory. Proceedings of the IEEE, 104(10), 1796–1830.
[8]. Jin, D.-Y., Chen, H., Wang, Y., Zhang, W.-R., Na, W.-C., Guo, B., Wu, L., Yang, S.-M. and Sun, S. (2020) Process deviation based electrical model of voltage controlled magnetic anisotropy magnetic tunnel junction and its application in read/write circuits. Acta Physica Sinica, 69(19), 198502.
[9]. Mikolajick, T., Slesazeck, S., Mulaosmanovic, H., Park, M. H., Fichtner, S., Lomenzo, P. D. and Hoffmann, M. (2020) Next generation ferroelectric memories: Fundamentals and future perspectives. Applied Physics Letters, 117(9), 090501.
[10]. Chiu, Y.-C., Lee, J.-Y., Chang, M.-F., Wu, J.-Y., Shen, W.-C., Lee, R.-S., King, Y.-C., Lin, C.-J. and Chen, P.-H. (2022) A 65nm 4Kb algorithm-dependent computing-in-memory SRAM unit macro with 2.3ns and 55.8TOPS/W all-precision-pipeline-capable binary-ternary-bitwise AI inference. *2022 IEEE International Solid-State Circuits Conference (ISSCC)*, 65, 1–3.
[11]. Manipatruni, S., Nikonov, D. E. and Young, I. A. (2018) Beyond CMOS computing with spin and polarization. Nature Physics, 14(4), 338–343.
[12]. Manipatruni, S., Nikonov, D. E., Lin, C.-C., Gosavi, T. A., Liu, H., Prasad, B., Young, I. A. and Naeemi, A. (2020) STT-MRAM based last-level cache for high-performance computing: System-level analysis and optimization. IEEE Transactions on Magnetics, 56(2), 1–7.
[13]. Onaya, T., Nabatame, T. and Toriumi, A. (2021) FeRAM-based in-memory computing for binary neural networks with energy-efficient polarization switching. 2021 IEEE International Electron Devices Meeting (IEDM), 3.4.1–3.4.4.
[14]. Khan, M. W., Jaiswal, A. and Alam, M. A. (2022) STT-MRAM for non-volatile cache memories: Perspectives and challenges. IEEE Transactions on Electron Devices, 69(6), 2857–2865.
[15]. Kumar, A. and Kim, Y. (2022) Emerging memory technologies for energy-efficient edge intelligence: A review. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 30(5), 567–580.
[16]. Ielmini, D. and Wong, H.-S. P. (2023) Machine learning using resistive random access memory: A review from a co-design perspective. IEEE Transactions on Electron Devices, 70(9), 4464–4475.
[17]. Klein, J.-O., Khan, M. W., et al. (2022) A review of STT-MRAM: From the device to the system. ACM Journal on Emerging Technologies in Computing Systems, 18(2), Article 30.
[18]. Grand View Research. (2023). *AI accelerator market size, share & trends analysis report 2023-2030* (Report ID: GVR-2-68038-841-3). https: //www.grandviewresearch.com/industry-analysis/ai-accelerator-market-report