References
[1]. Environmental Investigation Agency (EIA), "Climate Change, " [Online]. Available: https: //eia-international.org/climate-change/. [Accessed: Oct. 14, 2024].
[2]. International Energy Agency, World Energy Outlook 2022, IEA, Paris, 2022. [Online]. Available: https: //www.iea.org/reports/world-energy-outlook-2022?language=zh. [Accessed: Oct. 14, 2024]. License: CC BY 4.0 (report); CC BY NC SA 4.0 (Annex A).
[3]. L. Shu-hua, W. Jian-xue, L. Qing-tao, et al., "Optimization configuration of multi-energy complementary power station and its application in system power planning, " Power System Technology, vol. 45, no. 8, pp. 3006-3015, 2021, doi: 10.13335/j.1000-3673.pst.2020.1427.
[4]. Z. Ding, H. Hou, G. Yu, E. Hu, L. Duan, and J. Zhao, ‘Performance analysis of a wind-PV hybrid power generation system’, Energy Conversion and Management, vol. 181, pp. 223–234, Feb. 2019, doi: 10.1016/j.enconman.2018.11.080.
[5]. S.-r. Ouyang, D.-j. Zhu, X.-y. Ning, H.-r. Dai, and H.-m. Mo, "Study on energy storage operation in a power system with high wind power penetration, " Journal of Electrical Engineering, vol. 10, p. 155, Dec. 2022, doi: 10.12677/JEE.2022.104017.
[6]. J.-h. Li, G.-h. Chen, T. Ma, et al., "Optimal peak shaving control strategy for flow battery energy storage system under high wind power penetration, " Power Generation Technology, vol. 45, no. 3, pp. 434-447, 2024.
[7]. J.-c. Guo, Y.-z. He, F. Guo, et al., "Study on the improvement of microgrid operation characteristics by battery energy storage system, " Southern Energy Construction, vol. 2, no. 2, pp. 35-40, 2015, doi: 10.16516/j.gedi.issn2095-8676.2015.02.006.
[8]. X. Xiao, H. Yang, and L.-y. Pei, "Benefit analysis of charging infrastructure based on multi-energy complementary mode of wind, photovoltaic, and energy storage, " Southern Energy Construction, vol. 5, no. 3, pp. 120-126, 2018, doi: 10.16516/j.gedi.issn2095-8676.2018.03.020.
[9]. Y. Zhang, P. E. Campana, A. Lundblad, and J. Yan, ‘Comparative study of hydrogen storage and battery storage in grid connected photovoltaic system: Storage sizing and rule-based operation’, Applied Energy, vol. 201, pp. 397–411, Sep. 2017, doi: 10.1016/j.apenergy.2017.03.123.
[10]. M. Jiang and A.-w. Qumu, "Research on high-pressure hydrogen storage and transportation equipment and its risks, " Western Special Equipment, vol. 6, no. 4, pp. 7-13+41, 2023.
[11]. Z. Xie, Q. Jin, G. Su, and W. Lu, A Review of Hydrogen Storage and Transportation: Progresses and Challenges’, Energies, vol. 17, no. 16, Art. no. 16, Jan. 2024, doi: 10.3390/en17164070.
[12]. Q. Hassan, A. Z. Sameen, H. M. Salman, M. Jaszczur, and A. K. Al-Jiboory, ‘Hydrogen energy future: Advancements in storage technologies and implications for sustainability’, Journal of Energy Storage, vol. 72, p. 108404, Nov. 2023, doi: 10.1016/j.est.2023.108404.
[13]. J. Li et al., ‘Small-Scale High-Pressure Hydrogen Storage Vessels: A Review’, Materials, vol. 17, no. 3, Art. no. 3, Jan. 2024, doi: 10.3390/ma17030721.
[14]. X. Zhang, X. Wang, Y. Zhang, et al., "PEM water electrolysis for hydrogen production: fundamentals, advances, and prospects, " Carbon Neutrality, vol. 1, no. 1, pp. 22-38, 2022, doi: 10.1007/s43979-022-00022-8.
[15]. A.A. Al-Falahi, S. A. Al-Muharrami, A. S. Al-Hinai, and A. S. Al-Hinai, "A review of water electrolysis–based systems for hydrogen production using hybrid/PV/wind energy systems, " Environmental Science and Pollution Research, vol. 30, no. 9, pp. 23456–23469, 2023, doi: 10.1007/s11356-022-23323-y.
[16]. A.A. Al-Falahi, S. A. Al-Muharrami, A. S. Al-Hinai, and A. S. Al-Hinai, "Efficient PV-powered PEM electrolysis for sustainable hydrogen production: an integrated approach, " Emergent Materials, vol. 7, pp. 1–12, 2024, doi: 10.1007/s42247-024-00697-y.
[17]. T. Jing, G. Chen, Z.-h. Wang, et al., "A review of wind-PV hybrid power generation coupled with hydrogen energy storage systems, " Electric Power, vol. 55, no. 1, pp. 75-83, 2022.
[18]. Y.-k. Liu, "Integrated renewable energy manufacturing system of wind, PV, hydro, and hydrogen storage, " Southern Energy Construction, vol. 9, no. S1, pp. 9-16, 2022, doi: 10.16516/j.gedi.issn2095-8676.2022.S1.002.
[19]. C.-b. Xu and J.-g. Liu, "Application value, challenges, and prospects of hydrogen energy storage in China's new power system, " Engineering Sciences, vol. 24, no. 3, pp. 89-99, 2022.
[20]. Availability and LCOE Analysis Considering Failure Rate and Downtime for Onshore Wind Turbines in Japan. Accessed: Oct. 14, 2024. [Online]. Available: https: //www.mdpi.com/1996-1073/14/12/3528
[21]. J. Y. Ozato, G. Aquila, E. de Oliveira Pamplona, L. C. S. Rocha, and P. Rotella Junior, Offshore wind power generation: An economic analysis on the Brazilian coast from the stochastic LCOE, Ocean & Coastal Management, vol. 244, p. 106835, Oct. 2023, doi: 10.1016/j.ocecoaman.2023.106835.
[22]. U.S. Energy Information Administration, "Hourly Electric Grid Monitor, " [Online]. Available: https: //www.e.gov/e/grid/index.php.
[23]. I. Staffell and S. Pfenninger, "Renewables.ninja, " [Online]. Available: https: //www.renewables.ninja/. [Accessed: Oct. 14, 2024].
[24]. International Renewable Energy Agency (IRENA), "Renewable Power Generation Costs in 2022, " Aug. 2023. [Online]. Available: https: //www.irena.org/Publications/2023/Aug/Renewable-Power-Generation-Costs-in-2022. [Accessed: Oct. 14, 2024].