References
[1]. Garg, P., & Fetzer, T. (2025). Causal claims in economics. https: //www.causal.claims/
[2]. Gentzkow, M., Kelly, B. T., & Taddy, M. (2017). Text as data (No. 23276). http: //www.nber.org/papers/w23276
[3]. Ash, E., & Hansen, S. (2023). Text algorithms in economics. Annual Review of Economics, 15, 659-688.
[4]. Vaswani, A., et al. (2017). Attention is all you need. In 31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA.
[5]. Devlin, J., Chang, M.W., Lee, K., & Toutanova, K. (2019). BERT: Pre-training of deep bidirectional transformers for language understanding. In Proceedings of NAACL-HLT 2019, 4171-4186.
[6]. Brown, T. B., et al. (2020). Language models are few-shot learners. arXiv preprint arXiv: 2005.14165
[7]. Horton, J. J. (2023). Large language models as simulated economic agents: What can we learn from homo silicus? arXiv preprint arXiv: 2301.07543v1.
[8]. Hansen, S., & McMahon, M. (2016). Shocking language: Understanding the macroeconomic effects of central bank communication. Journal of International Economics, 99, S114-S133.
[9]. Ahrens, M., & McMahon, M. (2021). Extracting economic signals from central bank speeches. In Proceedings of the Third Workshop on Economics and Natural Language Processing, 93-114.
[10]. Hassan, T. A., Hollander, S., van Lent, L., & Tahoun, A. (2019). Firm-level political risk: Measurement and effects. NBER Working Paper Series.
[11]. Baker, S. R., Bloom, N., & Davis, S. J. (2016). Measuring economic policy uncertainty. Journal of Economic Perspectives, 30(2), 71-96.
[12]. Charemza, W., Makarova, S., & Rybiński, K. (2023). Economic uncertainty and natural language processing: The case of Russia. Economic Analysis and Policy.
[13]. Khalil, F., & Pipa, G. (2021). Is deep-learning and natural language processing transcending financial forecasting? Investigation through lens of news analytic process. Computational Economics, 60, 147-171.
[14]. Alam, M. S., Mrida, M. S. H., & Rahman, M. A. (2025). Sentiment analysis in social media: How data science impacts public opinion knowledge integrates natural language processing (NLP) with artificial intelligence (AI). American Journal of Scholarly Research and Innovation, 4(1), 63-100.
[15]. Izumi, K., & Sakaji, H. (2019). Economic causal-chain search using text mining technology. In Proceedings of the First Workshop on Financial Technology and Natural Language Processing (FinNLP@IJCAI 2019), 61-65.
[16]. Izumi, K., Sano, H., & Sakaji, H. (2023). Economic causal-chain search and economic indicator prediction using textual data.
[17]. Ettaleb, M., Moriceau, V., Kamel, M., & Aussenac-Gilles, N. (2025). The contribution of LLMs to relation extraction in the economic field. In Proceedings of the Joint Workshop of the 9th FinNLP, the 6th FNP, and the 1st LLMFinLegal, 175-183.
[18]. Takala, P., Malo, P., Sinha, A., & Ahlgren, O. (2023). Gold-standard for topic-specific sentiment analysis of economic texts. Journal of Information Science, 49(6), 2152-2167.
[19]. Keleş, O., & Bayraklı, Ö. T. (2024). LLaMA-2-econ: Enhancing title generation, abstract classification, and academic Q&A in economic research. In Proceedings of the Joint Workshop of the 7th FinNLP, the 5th KDF, and the 4th ECONLP, Valletta, Malta: ELRA Language Resource Association, 212-218.
[20]. Li, N., Gao, C., Li, M., Li, Y., & Liao, Q. (2024). EconAgent: Large language model-empowered agents for simulating macroeconomic activities. In Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics, 15523-15536.
[21]. Zheng, S., Trott, A., Srinivasa, S., Parkes, D. C., & Socher, R. (2022). The AI economist: Taxation policy design via two-level deep multiagent reinforcement learning. Science Advances, 8(18), eabk2607.
[22]. Wan, G., Lu, Y., Wu, Y., Hu, M., & Li, S. (2025). Large language models for causal discovery: Current landscape and future directions. arXiv preprint arXiv: 2402.11068v2 [cs.CL].
[23]. Gueta, A., Feder, A., Gekhman, Z., Goldstein, A., & Reichart, R. (2025). Can LLMs learn macroeconomic narratives from social media? Findings of the Association for Computational Linguistics: NAACL 2025, 57-78.
[24]. Guo, Y., & Yang, Y. (2024). Evaluating large language models on economics reasoning. In Findings of the Association for Computational Linguistics: ACL 2024, 5, 982-994.
[25]. Li, X., Cai, Z., Wang, S., Yu, K., & Chen, F. (2025). A survey on enhancing causal reasoning ability of large language models. arXiv preprint arXiv: 2503.09326, abs/2503.09326 v1.
[26]. Paul, D., West, R., Bosselut, A., & Faltings, B. (2024). Making reasoning matter: Measuring and improving faithfulness of chain-of-thought reasoning. In Findings of the Association for Computational Linguistics: EMNLP 2024, Mexico City, Mexico, 15012-15032.
[27]. Feder, A., et al. (2022). Causal inference in natural language processing: Estimation, prediction, interpretation and beyond. Transactions of the Association for Computational Linguistics, 10, 1138-1158.
[28]. Jantscher, M., & Kern, R. (2022). Causal investigation of public opinion during the COVID-19 pandemic via social media. In Proceedings of the 13th Conference on Language Resources and Evaluation, 211-226.
[29]. Mitchell, M., et al. (2019). Model cards for model reporting. In FAT’19: Conference on fairness, accountability, and transparency* (p. 10). ACM.
[30]. Dell, M. (2024). Deep learning for economists. NBER Working Paper Series, No. 32768. http: //www.nber.org/papers/w32768
[31]. Mumuni, F., & Mumuni, A. (2025). Explainable artificial intelligence (XAI): From inherent explainability to large language models.
[32]. Howell, K., et al. (2023). The economic trade-offs of large language models: A case study. In Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics, 5, 248-267.