References
[1]. Saleous, H., Gergely, M., & Shuaib, K. (2025). Exploring NLP-based solutions to social media moderation challenges. Wiley Human Behavior and Emerging Technologies, 9436490..
[2]. Al-Harigy, L. M., Al-Nuaim, H. A., Moradpoor, N., & Tan, Z. (2022). Building towards automated cyberbullying detection: A comparative analysis. Hindawi Computational Intelligence and Neuroscience, 4794227.
[3]. Dogra, V., Verma, S., Kavita, P., Chatterjee, P., Shafi, J., Choi, J., & Ijaz, M. F. (2022). A complete process of text classification system using state-of-the-art NLP models. Computational Intelligence and Neuroscience, 1883698.
[4]. Liu, P., Li, W., & Zou, L. (2019). NULI at SemEval-2019 task 6: Transfer learning for offensive language detection using bidirectional transformers. Proceedings of SemEval-2019 Task 6, 87-91.
[5]. Caselli, T., Basive, V., Mitrovic, J., et al. (2020). HateBERT: Retraining BERT for abusive language detection in English, 4-5.
[6]. Riyadi, S., Andriyani, A. D. Y., & Sulaiman, S. N. (2024). Improving hate speech detection using double-layer hybrid CNN-RNN model on imbalanced dataset. IEEE Access, 12, 159660-159668.
[7]. Yadav, U., Bondre, S., Thakre, B., et al. (2024). Speech-to-text Emotion Detection System using SVM, CNN, and BERT. In 2024 IEEE International Conference on Smart Power Control and Renewable Energy (ICSPCRE), 1-5.
[8]. Sharma, D., Gupta, V., & Singh, V. (2023). Detection of homophobia & transphobia in Dravidian languages: Exploring deep learning methods. In International Conference on Advanced Network Technologies and Intelligent Computing, 1798, 225-236.
[9]. Li, Z.Q. (2023). A Study on Cross-Domain Multimodal Hate Speech Detection. Dalian University of Technology.